975 resultados para Non-canonical Wnt pathway
Resumo:
Full text: The idea of producing proteins from recombinant DNA hatched almost half a century ago. In his PhD thesis, Peter Lobban foresaw the prospect of inserting foreign DNA (from any source, including mammalian cells) into the genome of a λ phage in order to detect and recover protein products from Escherichia coli [ 1 and 2]. Only a few years later, in 1977, Herbert Boyer and his colleagues succeeded in the first ever expression of a peptide-coding gene in E. coli — they produced recombinant somatostatin [ 3] followed shortly after by human insulin. The field has advanced enormously since those early days and today recombinant proteins have become indispensable in advancing research and development in all fields of the life sciences. Structural biology, in particular, has benefitted tremendously from recombinant protein biotechnology, and an overwhelming proportion of the entries in the Protein Data Bank (PDB) are based on heterologously expressed proteins. Nonetheless, synthesizing, purifying and stabilizing recombinant proteins can still be thoroughly challenging. For example, the soluble proteome is organized to a large part into multicomponent complexes (in humans often comprising ten or more subunits), posing critical challenges for recombinant production. A third of all proteins in cells are located in the membrane, and pose special challenges that require a more bespoke approach. Recent advances may now mean that even these most recalcitrant of proteins could become tenable structural biology targets on a more routine basis. In this special issue, we examine progress in key areas that suggests this is indeed the case. Our first contribution examines the importance of understanding quality control in the host cell during recombinant protein production, and pays particular attention to the synthesis of recombinant membrane proteins. A major challenge faced by any host cell factory is the balance it must strike between its own requirements for growth and the fact that its cellular machinery has essentially been hijacked by an expression construct. In this context, Bill and von der Haar examine emerging insights into the role of the dependent pathways of translation and protein folding in defining high-yielding recombinant membrane protein production experiments for the common prokaryotic and eukaryotic expression hosts. Rather than acting as isolated entities, many membrane proteins form complexes to carry out their functions. To understand their biological mechanisms, it is essential to study the molecular structure of the intact membrane protein assemblies. Recombinant production of membrane protein complexes is still a formidable, at times insurmountable, challenge. In these cases, extraction from natural sources is the only option to prepare samples for structural and functional studies. Zorman and co-workers, in our second contribution, provide an overview of recent advances in the production of multi-subunit membrane protein complexes and highlight recent achievements in membrane protein structural research brought about by state-of-the-art near-atomic resolution cryo-electron microscopy techniques. E. coli has been the dominant host cell for recombinant protein production. Nonetheless, eukaryotic expression systems, including yeasts, insect cells and mammalian cells, are increasingly gaining prominence in the field. The yeast species Pichia pastoris, is a well-established recombinant expression system for a number of applications, including the production of a range of different membrane proteins. Byrne reviews high-resolution structures that have been determined using this methylotroph as an expression host. Although it is not yet clear why P. pastoris is suited to producing such a wide range of membrane proteins, its ease of use and the availability of diverse tools that can be readily implemented in standard bioscience laboratories mean that it is likely to become an increasingly popular option in structural biology pipelines. The contribution by Columbus concludes the membrane protein section of this volume. In her overview of post-expression strategies, Columbus surveys the four most common biochemical approaches for the structural investigation of membrane proteins. Limited proteolysis has successfully aided structure determination of membrane proteins in many cases. Deglycosylation of membrane proteins following production and purification analysis has also facilitated membrane protein structure analysis. Moreover, chemical modifications, such as lysine methylation and cysteine alkylation, have proven their worth to facilitate crystallization of membrane proteins, as well as NMR investigations of membrane protein conformational sampling. Together these approaches have greatly facilitated the structure determination of more than 40 membrane proteins to date. It may be an advantage to produce a target protein in mammalian cells, especially if authentic post-translational modifications such as glycosylation are required for proper activity. Chinese Hamster Ovary (CHO) cells and Human Embryonic Kidney (HEK) 293 cell lines have emerged as excellent hosts for heterologous production. The generation of stable cell-lines is often an aspiration for synthesizing proteins expressed in mammalian cells, in particular if high volumetric yields are to be achieved. In his report, Buessow surveys recent structures of proteins produced using stable mammalian cells and summarizes both well-established and novel approaches to facilitate stable cell-line generation for structural biology applications. The ambition of many biologists is to observe a protein's structure in the native environment of the cell itself. Until recently, this seemed to be more of a dream than a reality. Advances in nuclear magnetic resonance (NMR) spectroscopy techniques, however, have now made possible the observation of mechanistic events at the molecular level of protein structure. Smith and colleagues, in an exciting contribution, review emerging ‘in-cell NMR’ techniques that demonstrate the potential to monitor biological activities by NMR in real time in native physiological environments. A current drawback of NMR as a structure determination tool derives from size limitations of the molecule under investigation and the structures of large proteins and their complexes are therefore typically intractable by NMR. A solution to this challenge is the use of selective isotope labeling of the target protein, which results in a marked reduction of the complexity of NMR spectra and allows dynamic processes even in very large proteins and even ribosomes to be investigated. Kerfah and co-workers introduce methyl-specific isotopic labeling as a molecular tool-box, and review its applications to the solution NMR analysis of large proteins. Tyagi and Lemke next examine single-molecule FRET and crosslinking following the co-translational incorporation of non-canonical amino acids (ncAAs); the goal here is to move beyond static snap-shots of proteins and their complexes and to observe them as dynamic entities. The encoding of ncAAs through codon-suppression technology allows biomolecules to be investigated with diverse structural biology methods. In their article, Tyagi and Lemke discuss these approaches and speculate on the design of improved host organisms for ‘integrative structural biology research’. Our volume concludes with two contributions that resolve particular bottlenecks in the protein structure determination pipeline. The contribution by Crepin and co-workers introduces the concept of polyproteins in contemporary structural biology. Polyproteins are widespread in nature. They represent long polypeptide chains in which individual smaller proteins with different biological function are covalently linked together. Highly specific proteases then tailor the polyprotein into its constituent proteins. Many viruses use polyproteins as a means of organizing their proteome. The concept of polyproteins has now been exploited successfully to produce hitherto inaccessible recombinant protein complexes. For instance, by means of a self-processing synthetic polyprotein, the influenza polymerase, a high-value drug target that had remained elusive for decades, has been produced, and its high-resolution structure determined. In the contribution by Desmyter and co-workers, a further, often imposing, bottleneck in high-resolution protein structure determination is addressed: The requirement to form stable three-dimensional crystal lattices that diffract incident X-ray radiation to high resolution. Nanobodies have proven to be uniquely useful as crystallization chaperones, to coax challenging targets into suitable crystal lattices. Desmyter and co-workers review the generation of nanobodies by immunization, and highlight the application of this powerful technology to the crystallography of important protein specimens including G protein-coupled receptors (GPCRs). Recombinant protein production has come a long way since Peter Lobban's hypothesis in the late 1960s, with recombinant proteins now a dominant force in structural biology. The contributions in this volume showcase an impressive array of inventive approaches that are being developed and implemented, ever increasing the scope of recombinant technology to facilitate the determination of elusive protein structures. Powerful new methods from synthetic biology are further accelerating progress. Structure determination is now reaching into the living cell with the ultimate goal of observing functional molecular architectures in action in their native physiological environment. We anticipate that even the most challenging protein assemblies will be tackled by recombinant technology in the near future.
Resumo:
DNA serves as a target molecule for several types of enzymes and may assume a wide variety of structural motifs depending upon the local sequence. The BssHII restriction site (GC)3 resides in a 9bp region of alternating pyrimidine and purine residues within the &phis;X174 genome. Such sequences are known to demonstrate non-canonical helical behavior under the appropriate conditions. The kinetics of BssHII cleavage was investigated in supercoiled and linear plasmid DNA, and in a 323bp DNA fragment obtained via amplification of &phis;X174. The rate of enzyme cleavage was enhanced in the supercoiled form and in the presence of 50μM cobalt hexamine. Similarly, cobalt hexamine was also found to enhance TaqI activity directly adjacent to the (GC)3 region. ^ Initial DNA polymerase I binding studies (including a gel mobility shift assay and a protection assay) indicated a notable interaction between DNA polymerase I and the BssHII site. An in-depth study revealed that equilibrium binding of DNA polymerase I to the T7 RNA polymerase promoter was comparable to that of the (GC)3 site, however the strongest interaction was observed with a cruciform containing region. Increasing the ionic strength of the solution environment, including the addition of DNA polymerase I reaction buffer significantly decreased the equilibrium dissociation constant values. ^ It is suggested that the region within or around the BssHII site experiences a conformational change generating a novel structure under the influence of supercoiled tension or 50μM cobalt hexamine. It is proposed that this transition may enhance enzyme activity and binding by providing an initial enzyme-docking site—the rate-limiting step in restriction enzyme kinetics. The high binding potential of DNA polymerase I for each of the motifs described, is hypothesized to be due to recognition of the structural DNA anomalies by the 3′–5′ exonuclease domain. ^
Resumo:
This dissertation analyzes various types of non-canonical texts authorized by women from a wide spectrum of classes and races in the Spanish colonies. The female voice, generally absent from official colonial documents of the sixteenth, seventeenth and eighteen centuries, left a gap in the complex subject of women's history and social participation. Through the study of personal letters, autobiographies, journals, court documents, inquisitorial transcripts, wills and testaments, edicts, orders, proclamations and posters, that voice is recovered. Thus, the Indigenous, Spaniards and African women and their descendants who lived during this period left their written legacy and proof of participation. Beginning with a thorough history of the native woman's interest in writing, this study focuses on how women of all social levels utilized the few means of writing available at their disposal to display a testimonial, critical and sometimes fictional narrative of their surroundings. ^ This investigation concludes that it is necessary to change the traditional image of the passive women of the colonies, subjected to a patriarchal authority and unable to speak or grow on their own. The documents under study, introduced women who were able to self represent themselves as followers of the tradition while at the same time their writings were denying that very same statement. They passed from the private arena to the public one with discourses that confessed their innermost feelings and concerns, challenged the authority of the Inquisitor or the Governor, exposed their sexual freedom and transvestite narratives, successfully developed stratagems that challenged the official ideology of the oppressive religious environment and established their own authority reaching at last the freedom of their souls. ^
Resumo:
Post-transcriptional regulation of cytoplasmic mRNAs is an efficient mechanism of regulating the amounts of active protein within a eukaryotic cell. RNA sequence elements located in the untranslated regions of mRNAs can influence transcript degradation or translation through associations with RNA-binding proteins. Tristetraprolin (TTP) is the best known member of a family of CCCH zinc finger proteins that targets adenosine-uridine rich element (ARE) binding sites in the 3’ untranslated regions (UTRs) of mRNAs, promoting transcript deadenylation through the recruitment of deadenylases. More specifically, TTP has been shown to bind AREs located in the 3’-UTRs of transcripts with known roles in the inflammatory response. The mRNA-binding region of the protein is the highly conserved CCCH tandem zinc finger (TZF) domain. The synthetic TTP TZF domain has been shown to bind with high affinity to the 13-mer sequence of UUUUAUUUAUUUU. However, the binding affinities of full-length TTP family members to the same sequence and its variants are unknown. Furthermore, the distance needed between two overlapping or neighboring UUAUUUAUU 9-mers for tandem binding events of a full-length TTP family member to a target transcript has not been explored. To address these questions, we recombinantly expressed and purified the full-length C. albicans TTP family member Zfs1. Using full-length Zfs1, tagged at the N-terminus with maltose binding protein (MBP), we determined the binding affinities of the protein to the optimal TTP binding sequence, UUAUUUAUU. Fluorescence anisotropy experiments determined that the binding affinities of MBP-Zfs1 to non-canonical AREs were influenced by ionic buffer strength, suggesting that transcript selectivity may be affected by intracellular conditions. Furthermore, electrophoretic mobility shift assays (EMSAs) revealed that separation of two core AUUUA sequences by two uridines is sufficient for tandem binding of MBP-Zfs1. Finally, we found evidence for tandem binding of MBP-Zfs1 to a 27-base RNA oligonucleotide containing only a single ARE-binding site, and showed that this was concentration and RNA length dependent; this phenomenon had not been seen previously. These data suggest that the association of the TTP TZF domain and the TZF domains of other species, to ARE-binding sites is highly conserved. Domains outside of the TZF domain may mediate transcript selectivity in changing cellular conditions, and promote protein-RNA interactions not associated with the ARE-binding TZF domain.
In summary, the evidence presented here suggests that Zfs1-mediated decay of mRNA targets may require additional interactions, in addition to ARE-TZF domain associations, to promote transcript destabilization and degradation. These studies further our understanding of post-transcriptional steps in gene regulation.
Resumo:
We investigated whether children’s inhibitory control is associated with their ability to produce irregular verb forms as well as learn from corrective feedback following their use of an over-regularized form. Forty-eight 3.5 to 4.5 year old children were tested on the irregular past tense and provided with adult corrective input via models of correct use or recasts of errors following ungrammatical responses. Inhibitory control was assessed with a three-item battery of tasks that required suppressing a prepotent response in favor of a non-canonical one. Results showed that inhibitory control was predictive of children’s initial production of irregular forms and not associated with their post-feedback production of irregulars. These findings show that children’s executive functioning skills may be a rate-limiting factor on their ability to produce correct forms, but might not interact with their ability to learn from input in this domain. Findings are discussed in terms of current theories of past-tense acquisition and learning from input more broadly.
Resumo:
Increased osteoclast (OC) bone resorption and/or decreased osteoblast (OB) bone formation contribute to bone loss in osteoporosis and rheumatoid arthritis (RA). Findings of the basic and translational research presented in this thesis demonstrate a number of mechanisms by which cytokine-induced NF-κB activation controls bone resorption and formation: 1) Tumour necrosis factor-α (TNF) expands pool of OC precursors (OCPs) by promoting their proliferation through stimulation of the expression of macrophage colony stimulating factor (M-CSF) receptor, c-Fms, and switching M-CSF-induced resident (M2) to inflammatory (M1) macrophages with enhanced OC forming potential and increased production of inflammatory factors through induction of NF-κB RelB; 2) Similar to RANKL, TNF sequentially activates transcriptional factors NF-κB p50 and p52 followed by c-Fos and then NFATc1 to induce OC differentiation. However, TNF alone induces very limited OC differentiation. In contrast, it pre-activates OCPs to express cFos which cooperates with interleukin-1 (IL-1) produced by these OCPs in an autocrine mechanism by interacting with bone matrix to mediate the OC terminal differentiation and bone resorption from these pre-activated OCPs. 3) TNF-induced OC formation is independent of RANKL but it also induces NF-κB2 p100 to limit OC formation and bone resorption, and thus p100 deletion accelerates joint destruction and systemic bone loss in TNF-induced RA; 4) TNF receptor associated factor-3 (TRAF3) limits OC differentiation by negatively regulating non-canonical NF-κB activation and RANKL induces TRAF3 ubiquitination and lysosomal degradation to promote OC differentiation. Importantly, a lysosomal inhibitor that inhibits TRAF3 degradation prevents ovariectomy-induced bone loss; 5) RelB and Notch NICD bind RUNX2 to inhibit OB differentiation and RelB:p52 dimer association with NICD inhibit OB differentiation by enhancing the binding of RBPjκ to Hes1. These findings suggest that non-canonical NF- κB signaling could be targets to develop new therapies for RA or osteoporosis. For example 1) Agents that degrade TNF-induced RelB could block M1 macrophage differentiation to inhibit inflammation and joint destruction for the therapy of RA; 2)Agents that prevent p100 processing or TRAF3 degradation could inhibit bone resorption and also stimulate bone formation simultaneously for the therapy of osteoporosis.
Resumo:
Wnt signalling is involved in a wide range of physiological and pathological processes. The presence of an extracellular Wnt stimulus induces cytoplasmic stabilisation and nuclear translocation of beta-catenin, a protein that also plays an essential role in cadherin-mediated adhesion. Two main hypotheses have been proposed concerning the balance between beta-catenin's adhesive and transcriptional functions: either beta-catenin's fate is determined by competition between its binding partners, or Wnt induces folding of beta-catenin into a conformation allocated preferentially to transcription. The experimental data supporting each hypotheses remain inconclusive. In this paper we present a new mathematical model of the Wnt pathway that incorporates beta-catenin's dual function. We use this model to carry out a series of in silico experiments and compare the behaviour of systems governed by each hypothesis. Our analytical results and model simulations provide further insight into the current understanding of Wnt signalling and, in particular, reveal differences in the response of the two modes of interaction between adhesion and signalling in certain in silico settings. We also exploit our model to investigate the impact of the mutations most commonly observed in human colorectal cancer. Simulations show that the amount of functional APC required to maintain a normal phenotype increases with increasing strength of the Wnt signal, a result which illustrates that the environment can substantially influence both tumour initiation and phenotype.
Resumo:
This dissertation traces the ways in which nineteenth-century fictional narratives of white settlement represent “family” as, on the one hand, an abstract theoretical model for a unified and relatively homogenous British settler empire and on the other, a fundamental challenge to ideas about imperial integrity and transnational Anglo-Saxon racial identification. I argue that representations of transoceanic white families in nineteenth-century fictions about Australian settler colonialism negotiate the tension between the bounded domesticity of an insular English nation and the kind of kinship that spans oceans and continents as a result of mass emigration from the British isles to the United States, Canada, New Zealand, and the Australian colonies. As such, these fictions construct productive analogies between the familial metaphors and affective language in the political discourse of “Greater Britain”—-a transoceanic imagined community of British settler colonies and their “mother country” united by race and language—-and ideas of family, gender, and domesticity as they operate within specific bourgeois families. Concerns over the disruption of transoceanic families bear testament to contradictions between the idea of a unified imperial identity (both British and Anglo-Saxon), the proliferation of fractured local identities (such as settlers’ English, Irish Catholic, and Australian nationalisms), and the conspicuous absence of indigenous families from narratives of settlement. I intervene at the intersection of postcolonial literary criticism and gender theory by examining the strategic deployments of heteronormative kinship metaphors and metonymies in the rhetorical consolidation of settler colonial space. Settler colonialism was distinct from the “civilizing” domination of subject peoples in South Asia in that it depended on the rhetorical construction of colonial territory as empty space or as land occupied by nearly extinct “primitive” races. This dissertation argues that political rhetoric, travel narratives, and fiction used the image of white female bourgeois reproductive power and sentimental attachment as a technology for settler colonial success, embodying this technology both in the benevolent figure of the metropolitan “mother country” (the paternalistic female counter to the material realities of patriarchal and violent settler colonial practices) and in fictional juxtapositions of happy white settler fecund families with the solitary self-extinguishing figure of the black aboriginal “savage.” Yet even in the narratives where the continuity and coherence of families across imperial space is questioned—-and “Greater Britain” itself—-domesticity and heteronormative familial relations effectively rewrite settler space as white, Anglo-Saxon and bourgeois, and the sentimentalism of troubled European families masks the presence and genocide of indigenous aboriginal peoples. I analyze a range of novels and political texts, canonical and non-canonical, metropolitan and colonial. My introductory first chapter examines the discourse on a “Greater Britain” in the travel narratives of J.A. Froude, Charles Wentworth Dilke, and Anthony Trollope and in the Oxbridge lectures of Herman Merivale and J.R. Seeley. These writers make arguments for an imperial economy of affect circulating between Britain and the settler colonies that reinforces political connections, and at times surpasses the limits of political possibility by relying on the language of sentiment and feeling to build a transoceanic “Greater British” community. Subsequent chapters show how metropolitan and colonial fiction writers, including Charles Dickens, Anthony Trollope, Marcus Clarke, Henry Kingsley, and Catherine Helen Spence, test the viability of this “Greater British” economy of affect by presenting transoceanic family connections and structures straining under the weight of forces including the vast distances between colonies and the “mother country,” settler violence, and the transportation system.
Resumo:
Spinal cord injury (SCI) is a devastating condition, which results from trauma to the cord, resulting in a primary injury response which leads to a secondary injury cascade, causing damage to both glial and neuronal cells. Following trauma, the central nervous system (CNS) fails to regenerate due to a plethora of both intrinsic and extrinsic factors. Unfortunately, these events lead to loss of both motor and sensory function and lifelong disability and care for sufferers of SCI. There have been tremendous advancements made in our understanding of the mechanisms behind axonal regeneration and remyelination of the damaged cord. These have provided many promising therapeutic targets. However, very few have made it to clinical application, which could potentially be due to inadequate understanding of compound mechanism of action and reliance on poor SCI models. This thesis describes the use of an established neural cell co-culture model of SCI as a medium throughput screen for compounds with potential therapeutic properties. A number of compounds were screened which resulted in a family of compounds, modified heparins, being taken forward for more intense investigation. Modified heparins (mHeps) are made up of the core heparin disaccharide unit with variable sulphation groups on the iduronic acid and glucosamine residues; 2-O-sulphate (C2), 6-O-sulphate (C6) and N-sulphate (N). 2-O-sulphated (mHep6) and N-sulphated (mHep7) heparin isomers were shown to promote both neurite outgrowth and myelination in the SCI model. It was found that both mHeps decreased oligodendrocyte precursor cell (OPC) proliferation and increased oligodendrocyte (OL) number adjacent to the lesion. However, there is a difference in the direct effects on the OL from each of the mHeps; mHep6 increased myelin internode length and mHep7 increased the overall cell size. It was further elucidated that these isoforms interact with and mediate both Wnt and FGF signalling. In OPC monoculture experiments FGF2 treated OPCs displayed increased proliferation but this effect was removed when co-treated with the mHeps. Therefore, suggesting that the mHeps interact with the ligand and inhibit FGF2 signalling. Additionally, it was shown that both mHeps could be partially mediating their effects through the Wnt pathway. mHep effects on both myelination and neurite outgrowth were removed when co-treated with a Wnt signalling inhibitor, suggesting cell signalling mediation by ligand immobilisation and signalling activation as a mechanistic action for the mHeps. However, the initial methods employed in this thesis were not sufficient to provide a more detailed study into the effects the mHeps have on neurite outgrowth. This led to the design and development of a novel microfluidic device (MFD), which provides a platform to study of axonal injury. This novel device is a three chamber device with two chambers converging onto a central open access chamber. This design allows axons from two points of origin to enter a chamber which can be subjected to injury, thus providing a platform in which targeted axonal injury and the regenerative capacity of a compound study can be performed. In conclusion, this thesis contributes to and advances the study of SCI in two ways; 1) identification and investigation of a novel set of compounds with potential therapeutic potential i.e. desulphated modified heparins. These compounds have multiple therapeutic properties and could revolutionise both the understanding of the basic pathological mechanisms underlying SCI but also be a powered therapeutic option. 2) Development of a novel microfluidic device to study in greater detail axonal biology, specifically, targeted axonal injury and treatment, providing a more representative model of SCI than standard in vitro models. Therefore, the MFD could lead to advancements and the identification of factors and compounds relating to axonal regeneration.
Resumo:
Positive-sense RNA viruses are important animal, plant, insect and bacteria pathogens and constitute the largest group of RNA viruses. Due to the relatively small size of their genomes, these viruses have evolved a variety of non-canonical translation mechanisms to optimize coding capacity expanding their proteome diversity. One such strategy is codon redefinition or recoding. First described in viruses, recoding is a programmed translation event in which codon alterations are context dependent. Recoding takes place in a subset of messenger RNA (mRNAs) with some products reflecting new, and some reflecting standard, meanings. The ratio between the two is both critical and highly regulated. While a variety of recoding mechanisms have been documented, (ribosome shunting, stop-carry on, termination-reinitiation, and translational bypassing), the two most extensively employed by RNA viruses are Programmed Ribosomal Frameshifting (PRF) and Programmed Ribosomal Readthrough (PRT). While both PRT and PRF subvert normal decoding for expression of C-terminal extension products, the former involves an alteration of reading frame, and the latter requires decoding of a non-sense codon. Both processes occur at a low but defined frequency, and both require Recoding Stimulatory Elements (RSE) for regulation and optimum functionality. These stimulatory signals can be embedded in the RNA in the form of sequence or secondary structure, or trans-acting factors outside the mRNA such as proteins or micro RNAs (miRNA). Despite 40+ years of study, the precise mechanisms by which viral RSE mediate ribosome recoding for the synthesis of their proteins, or how the ratio of these products is maintained, is poorly defined. This study reveals that in addition to a long distance RNA:RNA interaction, three alternate conformations and a phylogenetically conserved pseudoknot regulate PRT in the carmovirus Turnip crinkle virus (TCV).
Dinoflagellate Genomic Organization and Phylogenetic Marker Discovery Utilizing Deep Sequencing Data
Resumo:
Dinoflagellates possess large genomes in which most genes are present in many copies. This has made studies of their genomic organization and phylogenetics challenging. Recent advances in sequencing technology have made deep sequencing of dinoflagellate transcriptomes feasible. This dissertation investigates the genomic organization of dinoflagellates to better understand the challenges of assembling dinoflagellate transcriptomic and genomic data from short read sequencing methods, and develops new techniques that utilize deep sequencing data to identify orthologous genes across a diverse set of taxa. To better understand the genomic organization of dinoflagellates, a genomic cosmid clone of the tandemly repeated gene Alchohol Dehydrogenase (AHD) was sequenced and analyzed. The organization of this clone was found to be counter to prevailing hypotheses of genomic organization in dinoflagellates. Further, a new non-canonical splicing motif was described that could greatly improve the automated modeling and annotation of genomic data. A custom phylogenetic marker discovery pipeline, incorporating methods that leverage the statistical power of large data sets was written. A case study on Stramenopiles was undertaken to test the utility in resolving relationships between known groups as well as the phylogenetic affinity of seven unknown taxa. The pipeline generated a set of 373 genes useful as phylogenetic markers that successfully resolved relationships among the major groups of Stramenopiles, and placed all unknown taxa on the tree with strong bootstrap support. This pipeline was then used to discover 668 genes useful as phylogenetic markers in dinoflagellates. Phylogenetic analysis of 58 dinoflagellates, using this set of markers, produced a phylogeny with good support of all branches. The Suessiales were found to be sister to the Peridinales. The Prorocentrales formed a monophyletic group with the Dinophysiales that was sister to the Gonyaulacales. The Gymnodinales was found to be paraphyletic, forming three monophyletic groups. While this pipeline was used to find phylogenetic markers, it will likely also be useful for finding orthologs of interest for other purposes, for the discovery of horizontally transferred genes, and for the separation of sequences in metagenomic data sets.
Resumo:
Trans-splicing is a common phenomenon in nematodes and kinetoplastids, and it has also been reported in other organisms, including humans. Up to now, all in silico strategies to find evidence of trans-splicing in humans have required that the candidate sequences follow the consensus splicing site rules (spliceosome-mediated mechanism). However, this criterion is not supported by the best human experimental evidence, which, except in a single case, do not follow canonical splicing sites. Moreover, recent findings describe a novel alternative tRNA mediated trans-splicing mechanism, which prescinds the spliceosome machinery. In order to answer the question, ?Are there hybrid mRNAs in sequence databanks, whose characteristics resemble those of the best human experimental evidence??, we have developed a methodology that successfully identified 16 hybrid mRNAs which might be instances of interchromosomal trans-splicing. Each hybrid mRNA is formed by a trans-spliced region (TSR), which was successfully mapped either onto known genes or onto a human endogenous retrovirus (HERV-K) transcript which supports their transcription. The existence of these hybrid mRNAs indicates that trans-splicing may be more widespread than believed. Furthermore, non-canonical splice site patterns suggest that infrequent splicing sites may occur under special conditions, or that an alternative trans-splicing mechanism is involved. Finally, our candidates are supposedly from normal tissue, and a recent study has reported that trans-splicing may occur not only in malignant tissues, but in normal tissues as well. Our methodology can be applied to 5'-UTR, coding sequences and 3'-UTR in order to find new candidates for a posteriori experimental confirmation.
Resumo:
Clear cell sarcoma of the kidney (CCSK) is the second most common pediatric renal tumor, characterized in 90% of cases by the presence of internal tandem duplications (ITDs) localized at the last exon of BCOR gene. BCOR protein constitute a core component of the non-canonical Polycomb Repressive Complex1 (PRC1.1), which performs a fundamental silencing activity. ITDs in the last BCOR exon at the level of PUFD domain have been identified in many tumor subtypes and could affect PCGF1 binding and the subsequent PRC1.1 activity, although the exact oncogenic mechanism of ITD remains poorly understood. This project has the objective of investigating the molecular mechanisms underlying the oncogenesis of CCSK, approaching the study with different methodologies. A first model in HEK-293 allowed to obtain important informations about BCOR functionality, suggesting that the presence of ITD generates an altered activity which is very different from a loss-of-function. It has also been observed that BCOR function within the PRC1.1 complex varies with different ITDs. Moreover, it allowed the identification of molecular signatures evoked by the presence of BCOR-ITD, including its role in extracellular matrix interactions and invasiveness promotion. The parallel analysis of WTS data from 8 CCSK cases permitted the identification of a peculiar signature for metastatic CCSKs, highlighting a 20-fold overexpression of FGF3. This factor promoted a significant increase in invasive ability in the cellular model. In order to study BCOR-ITD effects over cell stemness and differentiation, an inducible model is being obtained in H1 cells. This way, it will be possible to study the functionality of BCOR-ITD in a context more similar to the origin of CCSKs, evaluating both the specific interactome and phenotypic consequences caused by the mutation.
Resumo:
The genetic factors that influence bladder cancer clinical outcomes are largely unknown. In this clinical outcomes study, I assessed genetic variations in the Wnt/β-catenin stem-cell pathway genes for association with recurrence and progression. A total of 230 SNPS in 40 genes from the Wnt/β-catenin pathway were genotyped in 419 histologically confirmed non-muscle invasive bladder cancer cases. Several significant associations were observed in the clinical outcomes analysis. Under the dominant model WNT8B: rs4919464 (HR: 1.55, 95% CI: 1.17-2.06, P=2.2x10-3) and WNT8B: rs3793771 (HR: 1.54, 95% CI: 1.09-1.62, P=4.6x10-3 ) were statistically significantly associated with an increase risk of recurrence while two other variants, APC2: rs11668593 (HR: 2.50, 95% CI: 1.43-4.35, P=1.2x10-3) and LRP5 : rs312778 (HR: 1.81, 95% CI: 1.23-2.65, P=2.7x10-3), were significantly associated with recurrence risk under the recessive model of inheritance. Four SNPs in the recessive model were associated with an increased risk of progression (AXIN2: rs1544427, LRP5: rs312778, AXIN1: rs370681, AXIN1: rs2301522). LRP5: rs312778 had the most significant increased risk of progression with a 2.68 (95% CI: 1.52-4.72, P=6.4x10-4)-fold increased risk. Stratification analysis based on treatment regimen (transurethral resection (TUR) and Bacillus Calmette-Guérin (BCG)) was also performed. Individuals with at least one variant in AXIN2: rs2007085 were found to have a 2.09 (95% CI: 1.24-3.52, P=5.4x10-3) -fold increased risk of recurrence in those that received TUR only, and no statistically significant effect was seen in those that received BCG. Individuals who received TUR with at least one variant in LEF1: rs10516550 were found to have a 2.26 (95% CI: 1.22-4.18, P=9.7x10-3)-fold increase risk of recurrence and no statistically significant effect was found in individuals who received BCG. Also, the recessive model of LRP6: rs2302684 in TUR only treatment was shown to have a 1.95 (95%CI: 1.18-3.21, P=8.8x10 -3)-fold increased risk of recurrence, and a suggested protective effect associated with a (HR: 0.83, 95% CI: 0.51-1.37, P=0.468) decreased risk of recurrence. Together, these findings implicate the Wnt/β-catenin stem-cell pathway as playing a role in bladder cancer clinical outcomes and have important implications for personalization of future treatment regimens. ^
Resumo:
Peer reviewed