899 resultados para Newspaper layout and design.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we present the theory and a design methodology for a unable Quasi-Lumped Quadrature Coupler (QLQC). Because of its topology, the coupler is simply reconfigured by switching the bias of two varactor diodes via a very simple DC bias circuitry. No additional capacitors or inductors are required. A prototype at 3.5 GHz is etched on a 0.130-mm-thick layer substrate with a dielectric material of relative permittivity of 2.22. The simulated and measured scattering parameters are, presented. (c) 2009 Wiley Periodicals, Inc. Microwave Opt Technol Lett 51: 2219-2222 2009: Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.24526

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, analysis and synthesis approach for two new variants within the Class-EF power amplifier (PA) family is elaborated. These amplifiers are classified here as Class-E3 F2 and transmission-line (TL) Class-E3 F 2. The proposed circuits offer means to alleviate some of the major issues faced by existing topologies such as substantial power losses due to the parasitic resistance of the large inductor in the Class-EF load network and deviation from ideal Class-EF operation due to the effect of device output inductance at high frequencies. Both lumped-element and transmission-line load networks for the Class-E 3 F PA are described. The load networks of the Class-E3 F and TL Class-E 3 F2amplifier topologies developed in this paper simultaneously satisfy the Class-EF optimum impedance requirements at fundamental frequency, second, and third harmonics as well as simultaneously providing matching to the circuit optimum load resistance for any prescribed system load resistance. Optimum circuit component values are analytically derived and validated by harmonic balance simulations. Trade-offs between circuit figures of merit and component values with some practical limitations being considered are discussed. © 2010 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Feleucins-BV1 and -BV2 are recently-described prototypes of a novel antimicrobial nonapeptide (AMP) family identified in the skin secretion of the bombinid toad, Bombina variegata. They are encoded on different precursors that also encode a novel bombinin. Here we describe the identification of feleucin-BO1 (FLGLLGSLLamide) which is co-encoded with a different novel bombinin, named feleucin precursor-associated bombinin (FPA-bombinin-BO), from the skin secretion of Bombina orientalis. Synthetic feleucin-BO1 displayed activity against a reference Gram-positive bacterium. Staphylococcus aureus (MIC 34 μM) but was inactive (> 250 μM) against the Gram-negative bacterium, Escherichia coli, and the yeast, Candida albicans. This pattern of activity was similar to that of the prototypes. Design and synthesis of a cationicity-enhanced analogue, feleucin-K3 (F-K3), in which the amino acid residues at positions 3 (G), 6 (G) and 7 (S) of feleucin-BO1 were substituted with Lys (K) residues, resulted in a peptide with significantly-enhanced potency and spectrum of activity. The MICs of F-K3 against the reference microorganisms were 7 μM (S. aureus), 14 μM (E. coli) and 7 μM (C. albicans). These data indicate that the skin secretions of amphibians can continue to provide novel peptide templates for the rational design of analogues with possible therapeutic utility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There has been a significant increase in the occurrence of cyanobacterial blooms in freshwaters over the past few decades due to escalating nutrient levels. These cyanobacteria release a range of toxins, for example microcystins which are chemically very stable. Many cyanotoxins are consequently very difficult to remove from water using existing treatment technologies. Semiconductor photocatalysis, however, has proven to be a very effective process for the removal of these compounds from water. In this chapter we consider the application of this highly versatile and exciting technology for the decomposition of cyanotoxins. Furthermore design concepts for solar photocatalytic reactors that could be utilized for the removal of these toxins are also considered