978 resultados para Neural stimulation.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compromised angiogenesis appears to be a major limitation in various suboptimal bone healing situations. Appropriate mechanical stimuli support blood vessel formation in vivo and improve healing outcomes. However, the mechanisms responsible for this association are unclear. To address this question, the paracrine angiogenic potential of early human fracture haematoma and its responsiveness to mechanical loading, as well as angiogenic growth factors involved, were investigated in vitro. Human haematomas were collected from healthy patients undergoing surgery within 72. h after bone fracture. The haematomas were embedded in a fibrin matrix, and cultured in a bioreactor resembling the in vivo conditions of the early phase of bone healing (20 compression, 1. Hz) over 3. days. Conditioned medium (CM) from the bioreactor was then analyzed. The matrices were also incubated in fresh medium for a further 24. h to evaluate the persistence of the effects. Growth factor (GF) concentrations were measured in the CM by ELISAs. In vitro tube formation assays were conducted on Matrigel with the HMEC-1 cell line, with or without inhibition of vascular endothelial growth factor receptor 2 (VEGFR2). Cell numbers were quantified using an MTS test. In vitro endothelial tube formation was enhanced by CM from haematomas, compared to fibrin controls. The angiogenesis regulators, vascular endothelial growth factor (VEGF) and transforming growth factor β1 (TGF-β1), were released into the haematoma CM, but not angiopoietins 1 or 2 (Ang1, 2), basic fibroblast growth factor (bFGF) or platelet-derived growth factor (PDGF). Mechanical stimulation of haematomas, but not fibrin controls, further increased the induction of tube formation by their CM. The mechanically stimulated haematoma matrices retained their elevated pro-angiogenic capacity for 24. h. The pro-angiogenic effect was cancelled by inhibition of VEGFR2 signalling. VEGF concentrations in CM tended to be elevated by mechanical stimulation; this was significant in haematomas from younger, but not from older patients. Other GFs were not mechanically regulated. In conclusion, the paracrine pro-angiogenic capacity of early human haematomas is enhanced by mechanical stimulation. This effect lasts even after removing the mechanical stimulus and appears to be VEGFR2-dependent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biodiesel, produced from renewable feedstock represents a more sustainable source of energy and will therefore play a significant role in providing the energy requirements for transportation in the near future. Chemically, all biodiesels are fatty acid methyl esters (FAME), produced from raw vegetable oil and animal fat. However, clear differences in chemical structure are apparent from one feedstock to the next in terms of chain length, degree of unsaturation, number of double bonds and double bond configuration-which all determine the fuel properties of biodiesel. In this study, prediction models were developed to estimate kinematic viscosity of biodiesel using an Artificial Neural Network (ANN) modelling technique. While developing the model, 27 parameters based on chemical composition commonly found in biodiesel were used as the input variables and kinematic viscosity of biodiesel was used as output variable. Necessary data to develop and simulate the network were collected from more than 120 published peer reviewed papers. The Neural Networks Toolbox of MatLab R2012a software was used to train, validate and simulate the ANN model on a personal computer. The network architecture and learning algorithm were optimised following a trial and error method to obtain the best prediction of the kinematic viscosity. The predictive performance of the model was determined by calculating the coefficient of determination (R2), root mean squared (RMS) and maximum average error percentage (MAEP) between predicted and experimental results. This study found high predictive accuracy of the ANN in predicting fuel properties of biodiesel and has demonstrated the ability of the ANN model to find a meaningful relationship between biodiesel chemical composition and fuel properties. Therefore the model developed in this study can be a useful tool to accurately predict biodiesel fuel properties instead of undertaking costly and time consuming experimental tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Olfactory ensheathing cells, the glial cells of the olfactory nervous system, exhibit unique growth-promoting and migratory properties that make them interesting candidates for cell therapies targeting neuronal injuries such as spinal cord injury. Transplantation of olfactory cells is feasible and safe in humans; however, functional outcomes are highly variable with some studies showing dramatic improvements and some no improvements at all. We propose that the reason for this is that the identity and purity of the cells is different in each individual study. We have shown that olfactory ensheathing cells are not a uniform cell population and that individual subpopulations of OECs are present in different regions of the olfactory nervous system, with strikingly different behaviors. Furthermore, the presence of fibroblasts and other cell types in the transplant can dramatically alter the behavior of the transplanted glial cells. Thus, a thorough characterization of the differences between olfactory ensheathing cell subpopulations and how the behavior of these cells is affected by the presence of other cell types is highly warranted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Safety concerns in the operation of autonomous aerial systems require safe-landing protocols be followed during situations where the mission should be aborted due to mechanical or other failure. This article presents a pulse-coupled neural network (PCNN) to assist in the vegetation classification in a vision-based landing site detection system for an unmanned aircraft. We propose a heterogeneous computing architecture and an OpenCL implementation of a PCNN feature generator. Its performance is compared across OpenCL kernels designed for CPU, GPU, and FPGA platforms. This comparison examines the compute times required for network convergence under a variety of images to determine the plausibility for real-time feature detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Along with the tri-lineage of bone, cartilage and fat, human mesenchymal stem cells (hMSCs) retain neural lineage potential. Multiple factors have been described that influence lineage fate of hMSCs including the extracellular microenvironment or niche. The niche includes the extracellular matrix (ECM) providing structural composition, as well as other associated proteins and growth factors, which collectively influence hMSC stemness and lineage specification. As such, lineage specific differentiation of MSCs is mediated through interactions including cell–cell and cell–matrix, as well as through specific signalling pathways triggering downstream events. Proteoglycans (PGs) are ubiquitous within this microenvironment and can be localised to the cell surface or embedded within the ECM. In addition, the heparan sulfate (HS) and chondroitin sulfate (CS) families of PGs interact directly with a number of growth factors, signalling pathways and ECM components including FGFs, Wnts and fibronectin. With evidence supporting a role for HSPGs and CSPGs in the specification of hMSCs down the osteogenic, chondrogenic and adipogenic lineages, along with the localisation of PGs in development and regeneration, it is conceivable that these important proteins may also play a role in the differentiation of hMSCs toward the neuronal lineage. Here we summarise the current literature and highlight the potential for HSPG directed neural lineage fate specification in hMSCs, which may provide a new model for brain damage repair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Directed cell migration is essential for normal development. In most of the migratory cell populations that have been analysed in detail to date, all of the cells migrate as a collective from one location to another. However, there are also migratory cell populations that must populate the areas through which they migrate, and thus some cells get left behind while others advance. Very little is known about how individual cells behave to achieve concomitant directional migration and population of the migratory route. We examined the behavior of enteric neural crest-derived cells (ENCCs), which must both advance caudally to reach the anal end and populate each gut region. Results The behaviour of individual ENCCs was examined using live imaging and mice in which ENCCs express a photoconvertible protein. We show that individual ENCCs exhibit very variable directionalities and speed; as the migratory wavefront of ENCCs advances caudally, each gut region is populated primarily by some ENCCs migrating non-directionally. After populating each region, ENCCs remain migratory for at least 24 hours. Endothelin receptor type B (EDNRB) signaling is known to be essential for the normal advance of the ENCC population. We now show that perturbation of EDNRB principally affects individual ENCC speed rather than directionality. The trajectories of solitary ENCCs, which occur transiently at the wavefront, were consistent with an unbiased random walk and so cell-cell contact is essential for directional migration. ENCCs migrate in close association with neurites. We showed that although ENCCs often use neurites as substrates, ENCCs lead the way, neurites are not required for chain formation and neurite growth is more directional than the migration of ENCCs as a whole. Conclusions Each gut region is initially populated by sub-populations of ENCCs migrating non-directionally, rather than stopping. This might provide a mechanism for ensuring a uniform density of ENCCs along the growing gut.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymer biomaterials have been widely used for bone replacement/regeneration because of their unique mechanical properties and workability. Their inherent low bioactivity makes them lack osseointegration with host bone tissue. For this reason, bioactive inorganic particles have been always incorporated into the matrix of polymers to improve their bioactivity. However, mixing inorganic particles with polymers always results in inhomogeneity of particle distribution in polymer matrix with limited bioactivity. This study sets out to apply the pulsed laser deposition (PLD) technique to prepare uniform akermanite (Ca2MgSi2O7, AKT) glass nanocoatings on the surface of two polymers (non-degradable polysulfone (PSU) and degradable polylactic acid (PDLLA)) in order to improve their surface osteogenic and angiogenic activity. The results show that a uniform nanolayer composed of amorphous AKT particles (∼30nm) of thickness 130nm forms on the surface of both PSU and PDLLA films with the PLD technique. The prepared AKT-PSU and AKT-PDLLA films significantly improved the surface roughness, hydrophilicity, hardness and apatite mineralization, compared with pure PSU and PDLLA, respectively. The prepared AKT nanocoatings distinctively enhance the alkaline phosphate (ALP) activity and bone-related gene expression (ALP, OCN, OPN and Col I) of bone-forming cells on both PSU and PDLLA films. Furthermore, AKT nanocoatings on two polymers improve the attachment, proliferation, VEGF secretion and expression of proangiogenic factors and their receptors of human umbilical vein endothelial cells (HUVEC). The results suggest that PLD-prepared bioceramic nanocoatings are very useful for enhancing the physicochemical, osteogenic and angiogenic properties of both degradable and non-degradable polymers for application in bone replacement/regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of artificial neural networks (ANN) in finance is relatively new area of research. We employed ANNs that used both fundamental and technical inputs to predict future prices of widely held Australian stocks and used these predicted prices for stock portfolio selection over a 10-year period (2001-2011). We found that the ANNs generally do well in predicting the direction of stock price movements. The stock portfolios selected by the ANNs with median accuracy are able to generate positive alpha over the 10-year period. More importantly, we found that a portfolio based on randomly selected network configuration had zero chance of resulting in a significantly negative alpha but a 27% chance of yielding a significantly positive alpha. This is in stark contrast to the findings of the research on mutual fund performance where active fund managers with negative alphas outnumber those with positive alphas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Brain Research Institute (BRI) uses various types of indirect measurements, including EEG and fMRI, to understand and assess brain activity and function. As well as the recovery of generic information about brain function, research also focuses on the utilisation of such data and understanding to study the initiation, dynamics, spread and suppression of epileptic seizures. To assist with the future focussing of this aspect of their research, the BRI asked the MISG 2010 participants to examine how the available EEG and fMRI data and current knowledge about epilepsy should be analysed and interpreted to yield an enhanced understanding about brain activity occurring before, at commencement of, during, and after a seizure. Though the deliberations of the study group were wide ranging in terms of the related matters considered and discussed, considerable progress was made with the following three aspects. (1) The science behind brain activity investigations depends crucially on the quality of the analysis and interpretation of, as well as the recovery of information from, EEG and fMRI measurements. A number of specific methodologies were discussed and formalised, including independent component analysis, principal component analysis, profile monitoring and change point analysis (hidden Markov modelling, time series analysis, discontinuity identification). (2) Even though EEG measurements accurately and very sensitively record the onset of an epileptic event or seizure, they are, from the perspective of understanding the internal initiation and localisation, of limited utility. They only record neuronal activity in the cortical (surface layer) neurons of the brain, which is a direct reflection of the type of electrical activity they have been designed to record. Because fMRI records, through the monitoring of blood flow activity, the location of localised brain activity within the brain, the possibility of combining fMRI measurements with EEG, as a joint inversion activity, was discussed and examined in detail. (3) A major goal for the BRI is to improve understanding about ``when'' (at what time) an epileptic seizure actually commenced before it is identified on an eeg recording, ``where'' the source of this initiation is located in the brain, and ``what'' is the initiator. Because of the general agreement in the literature that, in one way or another, epileptic events and seizures represent abnormal synchronisations of localised and/or global brain activity the modelling of synchronisations was examined in some detail. References C. M. Michel, G. Thut, S. Morand, A. Khateb, A. J. Pegna, R. Grave de Peralta, S. Gonzalez, M. Seeck and T. Landis, Electric source imaging of human brain functions, Brain Res. Rev. , 36 (2--3), 2001, 108--118. doi:10.1016/S0165-0173(01)00086-8 S. Ogawa, R. S. Menon, S. G. Kim and K. Ugurbil, On the characteristics of functional magnetic resonance imaging of the brain, Annu. Rev. Bioph. Biom. , 27 , 1998, 447--474. doi:10.1146/annurev.biophys.27.1.447 C. D. Binnie and H. Stefan, Modern electroencephalography: its role in epilepsy management, Clin. Neurophysiol. , 110 (10), 1999, 1671--1697. doi:10.1016/S1388-2457(99)00125-X J. X. Tao, A. Ray, S. Hawes-Ebersole and J. S. Ebersole, Intracranial eeg substrates of scalp eeg interictal spikes, Epilepsia , 46 (5), 2005, 669--76. doi:10.1111/j.1528-1167.2005.11404.x S. Ogawa, D. W. Tank, R. Menon, J. M. Ellermann, S. G. Kim, H. Merkle and K. Ugurbil, Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging, P. Natl. Acad. Sci. USA , 89 (13), 1992, 5951--5955. doi:10.1073/pnas.89.13.5951 J. Engel Jr., Report of the ilae classification core group, Epilepsia , 47 (9), 2006, 1558--1568. doi:10.1111/j.1528-1167.2006.00215.x L. Lemieux, A. Salek-Haddadi, O. Josephs, P. Allen, N. Toms, C. Scott, K. Krakow, R. Turner and D. R. Fish, Event-related fmri with simultaneous and continuous eeg: description of the method and initial case r port, NeuroImage , 14 (3), 2001, 780--7. doi:10.1006/nimg.2001.0853 P. Federico, D. F. Abbott, R. S. Briellmann, A. S. Harvey and G. D. Jackson, Functional mri of the pre-ictal state, Brain , 128 (8), 2005, 1811-7. doi:10.1093/brain/awh533 C. S. Hawco, A. P. Bagshaw, Y. Lu, F. Dubeau and J. Gotman, bold changes occur prior to epileptic spikes seen on scalp eeg, NeuroImage , 35 (4), 2007, 1450--1458. doi:10.1016/j.neuroimage.2006.12.042 F. Moeller, H. R. Siebner, S. Wolff, H. Muhle, R. Boor, O. Granert, O. Jansen, U. Stephani and M. Siniatchkin, Changes in activity of striato-thalamo-cortical network precede generalized spike wave discharges, NeuroImage , 39 (4), 2008, 1839--1849. doi:10.1016/j.neuroimage.2007.10.058 V. Osharina, E. Ponchel, A. Aarabi, R. Grebe and F. Wallois, Local haemodynamic changes preceding interictal spikes: A simultaneous electrocorticography (ecog) and near-infrared spectroscopy (nirs) analysis in rats, NeuroImage , 50 (2), 2010, 600--607. doi:10.1016/j.neuroimage.2010.01.009 R. S. Fisher, W. Boas, W. Blume, C. Elger, P. Genton, P. Lee and J. Engel, Epileptic seizures and epilepsy: Definitions proposed by the international league against epilepsy (ilae) and the international bureau for epilepsy (ibe), Epilepsia , 46 (4), 2005, 470--472. doi:10.1111/j.0013-9580.2005.66104.x H. Berger, Electroencephalogram in humans, Arch. Psychiat. Nerven. , 87 , 1929, 527--570. C. M. Michel, M. M. Murray, G. Lantz, S. Gonzalez, L. Spinelli and R. G. de Peralta, eeg source imaging, Clin. Neurophysiol. , 115 (10), 2004, 2195--2222. doi:10.1016/j.clinph.2004.06.001 P. L. Nunez and R. B. Silberstein, On the relationship of synaptic activity to macroscopic measurements: Does co-registration of eeg with fmri make sense?, Brain Topogr. , 13 (2), 2000, 79--96. doi:10.1023/A:1026683200895 S. Ogawa, T. M. Lee, A. R. Kay and D. W. Tank, Brain magnetic resonance imaging with contrast dependent on blood oxygenation, P. Natl. Acad. Sci. USA , 87 (24), 1990, 9868--9872. doi:10.1073/pnas.87.24.9868 J. S. Gati, R. S. Menon, K. Ugurbil and B. K. Rutt, Experimental determination of the bold field strength dependence in vessels and tissue, Magn. Reson. Med. , 38 (2), 1997, 296--302. doi:10.1002/mrm.1910380220 P. A. Bandettini, E. C. Wong, R. S. Hinks, R. S. Tikofsky and J. S. Hyde, Time course EPI of human brain function during task activation, Magn. Reson. Med. , 25 (2), 1992, 390--397. K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppelm, M. S. Cohen and R. Turner, Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation, P. Natl. Acad. Sci. USA , 89 (12), 1992, 5675--5679. doi:10.1073/pnas.89.12.5675 J. Frahm, K. D. Merboldt and W. Hnicke, Functional mri of human brain activation at high spatial resolution, Magn. Reson. Med. , 29 (1), 1993, 139--144. P. A. Bandettini, A. Jesmanowicz, E. C. Wong and J. S. Hyde, Processing strategies for time-course data sets in functional MRI of the human brain, Magn. Reson. Med. , 30 (2), 1993, 161--173. K. J. Friston, P. Jezzard and R. Turner, Analysis of functional MRI time-series, Hum. Brain Mapp. , 1 (2), 1994, 153--171. B. Biswal, F. Z. Yetkin, V. M. Haughton and J. S. Hyde, Functional connectivity in the motor cortex of resting human brain using echo-planar mri, Mag. Reson. Med. , 34 (4), 1995, 537--541. doi:10.1002/mrm.1910340409 K. J. Friston, J. Ashburner, C. D. Frith, J. Poline, J. D. Heather and R. S. J. Frackowiak, Spatial registration and normalization of images, Hum. Brain Mapp. , 3 (3), 1995, 165--189. K. J. Friston, S. Williams, R. Howard, R. S. Frackowiak and R. Turner, Movement-related effects in fmri time-series, Magn. Reson. Med. , 35 (3), 1996, 346--355. G. H. Glover, T. Q. Li and D. Ress, Image-based method for retrospective correction of physiological motion effects in fmri: Retroicor, Magn. Reson. Med. , 44 (1), 2000, 162--167. doi:10.1002/1522-2594(200007)44:13.0.CO;2-E K. J. Friston, O. Josephs, G. Rees and R. Turner, Nonlinear event-related responses in fmri, Magn. Reson. Med. , 39 (1), 1998, 41--52. doi:10.1002/mrm.1910390109 K. Ugurbil, L. Toth and D. Kim, How accurate is magnetic resonance imaging of brain function?, Trends Neurosci. , 26 (2), 2003, 108--114. doi:10.1016/S0166-2236(02)00039-5 D. S. Kim, I. Ronen, C. Olman, S. G. Kim, K. Ugurbil and L. J. Toth, Spatial relationship between neuronal activity and bold functional mri, NeuroImage , 21 (3), 2004, 876--885. doi:10.1016/j.neuroimage.2003.10.018 A. Connelly, G. D. Jackson, R. S. Frackowiak, J. W. Belliveau, F. Vargha-Khadem and D. G. Gadian, Functional mapping of activated human primary cortex with a clinical mr imaging system, Radiology , 188 (1), 1993, 125--130. L. Allison, Hidden Markov Models, Technical Report , School of Computer and Software Engineering, Monash University, 2000. R. J. Elliott, L. Aggoun and J.B. Moore, Hidden Markov Models: Estimation and Control, Appl. Math.-Czech. , 2004. B. Bhavnagri, Discontinuities of plane functions projected from a surface with methods for finding these , Technical Report, 2009. B. Bhavnagri, Computer Vision using Shape Spaces , Technical Report,1996, University of Adelaide. B. Bhavnagri, A method for representing shape based on an equivalence relation on polygons, Pattern Recogn. , 27 (2), 1994, 247--260. doi:10.1016/0031-3203(94)90057-4 D. F. Abbott, A. B. Waites, A. S. Harvey and G. D. Jackson, Exploring epileptic seizure onset with fmri, NeuroImage , 36(S1) (344TH-PM), 2007. M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science , 197 , 1977, 287--289. S. H. Strogatz, SYNC - The Emerging Science of Spontaneous Order , Theia, New York, 2003. J. W. Kim, J. A. Roberts and P. A. Robinson, Dynamics of epileptic seizures: Evolution, spreading, and suppression, J. Theor. Biol. , 257 (4), 2009, 527--532. doi:10.1016/j.jtbi.2008.12.009 Y. Kuramoto, T. Aoyagi, I. Nishikawa, T. Chawanya T and K. Okuda, Neural network model carrying phase information with application to collective dynamics, J. Theor. Phys. , 87 (5), 1992, 1119--1126. V. B. Mountcastle, The columnar organization of the neocortex, Brain , 120 (4), 1997, 701. doi:10.1093/brain/120.4.701 F. L. Silva, W. Blanes, S. N. Kalitzin, J. Parra, P. Suffczynski and D. N. Velis, Epilepsies as dynamical diseases of brain systems: Basic models of the transition between normal and epileptic activity, Epilepsia , 44 (12), 2003, 72--83. F. H. Lopes da Silva, W. Blanes, S. N. Kalitzin, J. Parra, P. Suffczynski and D. N. Velis, Dynamical diseases of brain systems: different routes to epileptic seizures, ieee T. Bio-Med. Eng. , 50 (5), 2003, 540. L.D. Iasemidis, Epileptic seizure prediction and control, ieee T. Bio-Med. Eng. , 50 (5), 2003, 549--558. L. D. Iasemidis, D. S. Shiau, W. Chaovalitwongse, J. C. Sackellares, P. M. Pardalos, J. C. Principe, P. R. Carney, A. Prasad, B. Veeramani, and K. Tsakalis, Adaptive epileptic seizure prediction system, ieee T. Bio-Med. Eng. , 50 (5), 2003, 616--627. K. Lehnertz, F. Mormann, T. Kreuz, R.G. Andrzejak, C. Rieke, P. David and C. E. Elger, Seizure prediction by nonlinear eeg analysis, ieee Eng. Med. Biol. , 22 (1), 2003, 57--63. doi:10.1109/MEMB.2003.1191451 K. Lehnertz, R. G. Andrzejak, J. Arnhold, T. Kreuz, F. Mormann, C. Rieke, G. Widman and C. E. Elger, Nonlinear eeg analysis in epilepsy: Its possible use for interictal focus localization, seizure anticipation, and prevention, J. Clin. Neurophysiol. , 18 (3), 2001, 209. B. Litt and K. Lehnertz, Seizure prediction and the preseizure period, Curr. Opin. Neurol. , 15 (2), 2002, 173. doi:10.1097/00019052-200204000-00008 B. Litt and J. Echauz, Prediction of epileptic seizures, Lancet Neurol. , 1 (1), 2002, 22--30. doi:10.1016/S1474-4422(02)00003-0 M. M{a}kiranta, J. Ruohonen, K Suominen, J. Niinim{a}ki, E. Sonkaj{a}rvi, V. Kiviniemi, T. Sepp{a}nen, S. Alahuhta, V. J{a}ntti and O. Tervonen, {bold} signal increase preceeds eeg spike activity--a dynamic penicillin induced focal epilepsy in deep anesthesia, NeuroImage , 27 (4), 2005, 715--724. doi:10.1016/j.neuroimage.2005.05.025 K. Lehnertz, F. Mormann, H. Osterhage, A. M{u}ller, J. Prusseit, A. Chernihovskyi, M. Staniek, D. Krug, S. Bialonski and C. E. Elger, State-of-the-art of seizure prediction, J. Clin. Neurophysiol. , 24 (2), 2007, 147. doi:10.1097/WNP.0b013e3180336f16 F. Mormann, T. Kreuz, C. Rieke, R. G. Andrzejak, A. Kraskov, P. David, C. E. Elger and K. Lehnertz, On the predictability of epileptic seizures, Clin. Neurophysiol. , 116 (3), 2005, 569--587. doi:10.1016/j.clinph.2004.08.025 F. Mormann, R. G. Andrzejak, C. E. Elger and K. Lehnertz, Seizure prediction: the long and winding road, Brain , 130 (2), 2007, 314--333. doi:10.1093/brain/awl241 Z. Rogowski, I. Gath and E. Bental, On the prediction of epileptic seizures, Biol. Cybern. , 42 (1), 1981, 9--15. Y. Salant, I. Gath, O. Henriksen, Prediction of epileptic seizures from two-channel eeg, Med. Biol. Eng. Comput. , 36 (5), 1998, 549--556. doi:10.1007/BF02524422 J. Gotman and D.J. Koffler, Interictal spiking increases after seizures but does not after decrease in medication, Evoked Potential , 72 (1), 1989, 7--15. J. Gotman and M. G. Marciani, Electroencephalographic spiking activity, drug levels, and seizure occurence in epileptic patients, Ann. Neurol. , 17 (6), 1985, 59--603. A. Katz, D. A. Marks, G. McCarthy and S. S. Spencer, Does interictal spiking change prior to seizures?, Electroen. Clin. Neuro. , 79 (2), 1991, 153--156. A. Granada, R. M. Hennig, B. Ronacher, A. Kramer and H. Herzel, Phase Response Curves: Elucidating the dynamics of couples oscillators, Method Enzymol. , 454 (A), 2009, 1--27. doi:10.1016/S0076-6879(08)03801-9 doi:10.1016/S0076-6879(08)03801-9 H. Kantz and T. Schreiber, Nonlinear time series analysis , 2004, Cambridge Univ Press. M. V. L. Bennett and R. S Zukin, Electrical coupling and neuronal synchronization in the mammalian brain, Neuron , 41 (4), 2004, 495 --511. doi:10.1016/S0896-6273(04)00043-1 L.D. Iasemidis, J. Chris Sackellares, H. P. Zaveri and W. J. Williams, Phase space topography and the Lyapunov exponent of electrocorticograms in partial seizures, Brain Topogr. , 2 (3), 1990, 187--201. doi:10.1007/BF01140588 M. Le Van Quyen, J. Martinerie, V. Navarro, M. Baulac and F. J. Varela, Characterizing neurodynamic changes before seizures, J. Clin. Neurophysiol. , 18 (3), 2001, 191. J. Martinerie, C. Adam, M. Le Van Quyen, M. Baulac, S. Clemenceau, B. Renault and F. J. Varela, Epileptic seizures can be anticipated by non-linear analysis, Nat. Med. , 4 (10), 1998, 1173--1176. doi:10.1038/2667 A. Pikovsky, M. Rosenblum, J. Kurths and R. C. Hilborn, Synchronization: A universal concept in nonlinear science, Amer. J. Phys. , 70 , 2002, 655. H. R. Wilson and J. D. Cowan, Excitatory and inhibitory interactions in localized populations of model neurons, Biophys. J. , 12 (1), 1972, 1--24. D. Cumin and C. P. Unsworth, Generalising the Kuramoto model for the study of neuronal synchronisation in the brain, Physica D , 226 (2), 2007, 181--196. doi:10.1016/j.physd.2006.12.004 F. K. Skinner, H. Bazzazi and S. A. Campbell, Two-cell to N-cell heterogeneous, inhibitory networks: Precise linking of multistable and coherent properties, J. Comput. Neurosci. , 18 (3), 2005, 343--352. doi:10.1007/s10827-005-0331-1 W. W. Lytton, Computer modelling of epilepsy, Nat. Rev. Neurosci. , 9 (8), 2008, 626--637. doi:10.1038/nrn2416 R. D. Traub, A. Bibbig, F. E. N. LeBeau, E. H. Buhl and M. A. Whittington, Cellular mechanisms of neuronal population oscillations in the hippocampus in vitro, Ann. Rev. , 2004. R. D. Traub, A. Draguhn, M. A. Whittington, T. Baldeweg, A. Bibbig, E. H. Buhl and D. Schmitz, Axonal gap junc ions between principal neurons: A novel source of network oscillations, and perhaps epileptogenesis., Rev. Neuroscience , 13 (1), 2002, 1. doi:10.1146/annurev.neuro.27.070203.144303 M. Scheffer, J. Bascompte, W. A. Brock, V. Brovkin, S. R. Carpenter, V. Dakos, H. Held, E. H. van Nes, M. Rietkerk and G. Sugihara, Early-warning signals for critical transitions, Nature , 461 (7260), 2009, 53--59. doi:10.1038/nature08227 K. Murphy, A Brief Introduction to Graphical Models and Bayesian Networks , 2008, http://www.cs.ubc.ca/murphyk/Bayes/bnintro.html . R. C. Bradley, An elementary

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this research was to develop a model to estimate future freeway pavement construction costs in Henan Province, China. A comprehensive set of factors contributing to the cost of freeway pavement construction were included in the model formulation. These factors comprehensively reflect the characteristics of region and topography and altitude variation, the cost of labour, material, and equipment, and time-related variables such as index numbers of labour prices, material prices and equipment prices. An Artificial Neural Network model using the Back-Propagation learning algorithm was developed to estimate the cost of freeway pavement construction. A total of 88 valid freeway cases were obtained from freeway construction projects let by the Henan Transportation Department during the period 1994−2007. Data from a random selection of 81 freeway cases were used to train the Neural Network model and the remaining data were used to test the performance of the Neural Network model. The tested model was used to predict freeway pavement construction costs in 2010 based on predictions of input values. In addition, this paper provides a suggested correction for the prediction of the value for the future freeway pavement construction costs. Since the change in future freeway pavement construction cost is affected by many factors, the predictions obtained by the proposed method, and therefore the model, will need to be tested once actual data are obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adult neural stem cells (NSCs) play important roles in learning and memory and are negatively impacted by neurological disease. It is known that biochemical and genetic factors regulate self-renewal and differentiation, and it has recently been suggested that mechanical and solid-state cues, such as extracellular matrix (ECM) stiffness, can also regulate the functions of NSCs and other stem cell types. However, relatively little is known of the molecular mechanisms through which stem cells transduce mechanical inputs into fate decisions, the extent to which mechanical inputs instruct fate decisions versus select for or against lineage-committed blast populations, or the in vivo relevance of mechanotransductive signaling molecules in native stem cell niches. Here we demonstrate that ECM-derived mechanical signals act through Rho GTPases to activate the cellular contractility machinery in a key early window during differentiation to regulate NSC lineage commitment. Furthermore, culturing NSCs on increasingly stiff ECMs enhances RhoA and Cdc42 activation, increases NSC stiffness, and suppresses neurogenesis. Likewise, inhibiting RhoA and Cdc42 or downstream regulators of cellular contractility rescues NSCs from stiff matrix- and Rho GTPase-induced neurosuppression. Importantly, Rho GTPase expression and ECM stiffness do not alter proliferation or apoptosis rates indicating that an instructive rather than selective mechanism modulates lineage distributions. Finally, in the adult brain, RhoA activation in hippocampal progenitors suppresses neurogenesis, analogous to its effect in vitro. These results establish Rho GTPase-based mechanotransduction and cellular stiffness as biophysical regulators of NSC fate in vitro and RhoA as an important regulatory protein in the hippocampal stem cell niche.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines the use of connectionism (neural networks) in modelling legal reasoning. I discuss how the implementations of neural networks have failed to account for legal theoretical perspectives on adjudication. I criticise the use of neural networks in law, not because connectionism is inherently unsuitable in law, but rather because it has been done so poorly to date. The paper reviews a number of legal theories which provide a grounding for the use of neural networks in law. It then examines some implementations undertaken in law and criticises their legal theoretical naïvete. It then presents a lessons from the implementations which researchers must bear in mind if they wish to build neural networks which are justified by legal theories.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have demonstrated that pattern recognition approaches to accelerometer data reduction are feasible and moderately accurate in classifying activity type in children. Whether pattern recognition techniques can be used to provide valid estimates of physical activity (PA) energy expenditure in youth remains unexplored in the research literature. Purpose: The objective of this study is to develop and test artificial neural networks (ANNs) to predict PA type and energy expenditure (PAEE) from processed accelerometer data collected in children and adolescents. Methods: One hundred participants between the ages of 5 and 15 yr completed 12 activity trials that were categorized into five PA types: sedentary, walking, running, light-intensity household activities or games, and moderate-to-vigorous intensity games or sports. During each trial, participants wore an ActiGraph GTIM on the right hip, and (V) Over dotO(2) was measured using the Oxycon Mobile (Viasys Healthcare, Yorba Linda, CA) portable metabolic system. ANNs to predict PA type and PAEE (METs) were developed using the following features: 10th, 25th, 50th, 75th, and 90th percentiles and the lag one autocorrelation. To determine the highest time resolution achievable, we extracted features from 10-, 15-, 20-, 30-, and 60-s windows. Accuracy was assessed by calculating the percentage of windows correctly classified and root mean square en-or (RMSE). Results: As window size increased from 10 to 60 s, accuracy for the PA-type ANN increased from 81.3% to 88.4%. RMSE for the MET prediction ANN decreased from 1.1 METs to 0.9 METs. At any given window size, RMSE values for the MET prediction ANN were 30-40% lower than the conventional regression-based approaches. Conclusions: ANNs can be used to predict both PA type and PAEE in children and adolescents using count data from a single waist mounted accelerometer.