929 resultados para Network Modelling
Resumo:
Background: <br/>The physical periphery of a biological cell is mainly described by signaling pathways which are triggered by transmembrane proteins and receptors that are sentinels to control the whole gene regulatory network of a cell. However, our current knowledge about the gene regulatory mechanisms that are governed by extracellular signals is severely limited.Results: The purpose of this paper is three fold. First, we infer a gene regulatory network from a large-scale B-cell lymphoma expression data set using the C3NET algorithm. Second, we provide a functional and structural analysis of the largest connected component of this network, revealing that this network component corresponds to the peripheral region of a cell. Third, we analyze the hierarchical organization of network components of the whole inferred B-cell gene regulatory network by introducing a new approach which exploits the variability within the data as well as the inferential characteristics of C3NET. As a result, we find a functional bisection of the network corresponding to different cellular components.<br/><br/>Conclusions: <br/>Overall, our study allows to highlight the peripheral gene regulatory network of B-cells and shows that it is centered around hub transmembrane proteins located at the physical periphery of the cell. In addition, we identify a variety of novel pathological transmembrane proteins such as ion channel complexes and signaling receptors in B-cell lymphoma. © 2012 Simoes et al.; licensee BioMed Central Ltd.
Resumo:
Approach: <br/>In-situ passive gradient comparative artificial tracer testing, undertaken using solutes (Uranine and Iodide), Bacteria (E.coli and P.putida) and bacteriophage (H40/1), permitted comparison of the mobility of different sized microorganisms relative to solutes in the sand and gravel aquifer underlying Dornach, Germany. <br/>Tracer breakthrough curves reveal that even though uranine initially arrived at observation wells at the same time as microbiological tracers, maximum relative concentrations were sometimes less than those of microbiological tracers, while solute breakthrough curves proved more disperse. <br/>Monitoring uranine breakthrough with depth suggested tracers arrived in observation wells in discrete 0.5m-1m thick intervals, over the aquifer’s 12m saturated thickness. Nearby exposures of aquifer material suggested that the aquifer consisted of sandy gravels enveloping sequences of open framework (OW) gravel up to 1m thick. Detailed examination of OW units revealed that they contained lenses of silty sand up to 1m long x 30cm thick., while granulometric data suggested that the gravel was two to three orders of magnitude more permeable than the enveloping sandy gravel. <br/>Solute and microorganism tracer responses could not be simulated using conventional advective-dispersive equation solutions employing the same velocity and dispersion terms. By contrast solute tracer responses, modelled using a dual porosity approach for fractured media (DP-1D) corresponded well to observed field data. Simulating microorganism responses using the same transport terms, but no dual porosity term, generated good model fits and explained the higher relative concentration of the bacteria, compared to the non-reactive solute, even with first order removal to account for lower RR. Geologically, model results indicate that the silty units within open framework gravels are accessible to solute tracers, but not to microorganisms. <br/>Importance: <br/>Results highlight the benefits of geological observations developing appropriate conceptual models of solute and micro organism transport and in developing suitable numerical approaches to quantifying microorganism mobility at scales appropriate for the development of groundwater supply (wellhead) protection zones. <br/>
Resumo:
In recent years, several phenomenological dynamical models have been formulated that describe how perceptual variables are incorporated in the control of motor variables. We call these short-route models as they do not address how perception-action patterns might be constrained by the dynamical properties of the sensory, neural and musculoskeletal subsystems of the human action system. As an alternative, we advocate a long-route modelling approach in which the dynamics of these subsystems are explicitly addressed and integrated to reproduce interceptive actions. The approach is exemplified through a discussion of a recently developed model for interceptive actions consisting of a neural network architecture for the online generation of motor outflow commands, based on time-to-contact information and information about the relative positions and velocities of hand and ball. This network is shown to be consistent with both behavioural and neurophysiological data. Finally, some problems are discussed with regard to the question of how the motor outflow commands (i.e. the intended movement) might be modulated in view of the musculoskeletal dynamics.
Resumo:
This paper describes a data model for content representation of temporal media in an IP based sensor network. The model is formed by introducing the idea of semantic-role from linguistics into the underlying concepts of formal event representation with the aim of developing a common event model. The architecture of a prototype system for a multi camera surveillance system, based on the proposed model is described. The important aspects of the proposed model are its expressiveness, its ability to model content of temporal media, and its suitability for use with a natural language interface. It also provides a platform for temporal information fusion, as well as organizing sensor annotations by help of ontologies.
Resumo:
This paper examines the ability of the doubly fed induction generator (DFIG) to deliver multiple reactive power objectives during variable wind conditions. The reactive power requirement is decomposed based on various control objectives (e.g. power factor control, voltage control, loss minimisation, and flicker mitigation) defined around different time frames (i.e. seconds, minutes, and hourly), and the control reference is generated by aggregating the individual reactive power requirement for each control strategy. A novel coordinated controller is implemented for the rotor-side converter and the grid-side converter considering their capability curves and illustrating that it can effectively utilise the aggregated DFIG reactive power capability for system performance enhancement. The performance of the multi-objective strategy is examined for a range of wind and network conditions, and it is shown that for the majority of the scenarios, more than 92% of the main control objective can be achieved while introducing the integrated flicker control scheme with the main reactive power control scheme. Therefore, optimal control coordination across the different control strategies can maximise the availability of ancillary services from DFIG-based wind farms without additional dynamic reactive power devices being installed in power networks.
Resumo:
In the production process of polyethylene terephthalate (PET) bottles, the initial temperature of preforms plays a central role on the final thickness, intensity and other structural properties of the bottles. Also, the difference between inside and outside temperature profiles could make a significant impact on the final product quality. The preforms are preheated by infrared heating oven system which is often an open loop system and relies heavily on trial and error approach to adjust the lamp power settings. In this paper, a radial basis function (RBF) neural network model, optimized by a two-stage selection (TSS) algorithm combined with partial swarm optimization (PSO), is developed to model the nonlinear relations between the lamp power settings and the output temperature profile of PET bottles. Then an improved PSO method for lamp setting adjustment using the above model is presented. Simulation results based on experimental data confirm the effectiveness of the modelling and optimization method.
Resumo:
<p>Being a new generation of green solvents and high-tech reaction media of the future, ionic liquids have increasingly attracted much attention. Of particular interest in this context are room temperature ionic liquids (in short as ILs in this paper). Due to the relatively high viscosity, ILs is expected to be used in the form of solvent diluted mixture with reduced viscosity in industrial application, where predicting the viscosity of IL mixture has been an important research issue. Different IL mixture and many modelling approaches have been investigated. The objective of this study is to provide an alternative model approach using soft computing technique, i.e., artificial neural network (ANN) model, to predict the compositional viscosity of binary mixtures of ILs [C <sub>n</sub>-mim][NTf <sub>2</sub>] with n=4, 6, 8, 10 in methanol and ethanol over the entire range of molar fraction at a broad range of temperatures from T=293.0-328.0K. The results show that the proposed ANN model provides alternative way to predict compositional viscosity successfully with highly improved accuracy and also show its potential to be extensively utilized to predict compositional viscosity taking account of IL alkyl chain length, as well as temperature and compositions simultaneously, i.e., more complex intermolecular interactions between components in which it would be hard or impossible to establish the analytical model. This illustrates the potential application of ANN in the case that the physical and thermodynamic properties are highly non-linear or too complex. © 2012 Copyright the authors.</p>
Resumo:
This Integration Insight provides a brief overview of the most popular modelling techniques used to analyse complex real-world problems, as well as some less popular but highly relevant techniques. The modelling methods are divided into three categories, with each encompassing a number of methods, as follows: 1) Qualitative Aggregate Models (Soft Systems Methodology, Concept Maps and Mind Mapping, Scenario Planning, Causal (Loop) Diagrams), 2) Quantitative Aggregate Models (Function fitting and Regression, Bayesian Nets, System of differential equations / Dynamical systems, System Dynamics, Evolutionary Algorithms) and 3) Individual Oriented Models (Cellular Automata, Microsimulation, Agent Based Models, Discrete Event Simulation, Social Network<br/>Analysis). Each technique is broadly described with example uses, key attributes and reference material.
Resumo:
Systems equipped with multiple antennas at the transmitter and at the receiver, known as MIMO (Multiple Input Multiple Output) systems, offer higher capacities, allowing an efficient exploitation of the available spectrum and/or the employment of more demanding applications. It is well known that the radio channel is characterized by multipath propagation, a phenomenon deemed problematic and whose mitigation has been achieved through techniques such as diversity, beamforming or adaptive antennas. By exploring conveniently the spatial domain MIMO systems turn the characteristics of the multipath channel into an advantage and allow creating multiple parallel and independent virtual channels. However, the achievable benefits are constrained by the propagation channel’s characteristics, which may not always be ideal. This work focuses on the characterization of the MIMO radio channel. It begins with the presentation of the fundamental results from information theory that triggered the interest on these systems, including the discussion of some of their potential benefits and a review of the existing channel models for MIMO systems. The characterization of the MIMO channel developed in this work is based on experimental measurements of the double-directional channel. The measurement system is based on a vector network analyzer and a two-dimensional positioning platform, both controlled by a computer, allowing the measurement of the channel’s frequency response at the locations of a synthetic array. Data is then processed using the SAGE (Space-Alternating Expectation-Maximization) algorithm to obtain the parameters (delay, direction of arrival and complex amplitude) of the channel’s most relevant multipath components. Afterwards, using a clustering algorithm these data are grouped into clusters. Finally, statistical information is extracted allowing the characterization of the channel’s multipath components. The information about the multipath characteristics of the channel, induced by existing scatterers in the propagation scenario, enables the characterization of MIMO channel and thus to evaluate its performance. The method was finally validated using MIMO measurements.
Resumo:
The most biologically-inspired artificial neurons are those of the third generation, and are termed spiking neurons, as individual pulses or spikes are the means by which stimuli are communicated. In essence, a spike is a short-term change in electrical potential and is the basis of communication between biological neurons. Unlike previous generations of artificial neurons, spiking neurons operate in the temporal domain, and exploit time as a resource in their computation. In 1952, Alan Lloyd Hodgkin and Andrew Huxley produced the first model of a spiking neuron; their model describes the complex electro-chemical process that enables spikes to propagate through, and hence be communicated by, spiking neurons. Since this time, improvements in experimental procedures in neurobiology, particularly with in vivo experiments, have provided an increasingly more complex understanding of biological neurons. For example, it is now well understood that the propagation of spikes between neurons requires neurotransmitter, which is typically of limited supply. When the supply is exhausted neurons become unresponsive. The morphology of neurons, number of receptor sites, amongst many other factors, means that neurons consume the supply of neurotransmitter at different rates. This in turn produces variations over time in the responsiveness of neurons, yielding various computational capabilities. Such improvements in the understanding of the biological neuron have culminated in a wide range of different neuron models, ranging from the computationally efficient to the biologically realistic. These models enable the modelling of neural circuits found in the brain. In recent years, much of the focus in neuron modelling has moved to the study of the connectivity of spiking neural networks. Spiking neural networks provide a vehicle to understand from a computational perspective, aspects of the brain’s neural circuitry. This understanding can then be used to tackle some of the historically intractable issues with artificial neurons, such as scalability and lack of variable binding. Current knowledge of feed-forward, lateral, and recurrent connectivity of spiking neurons, and the interplay between excitatory and inhibitory neurons is beginning to shed light on these issues, by improved understanding of the temporal processing capabilities and synchronous behaviour of biological neurons. This research topic aims to amalgamate current research aimed at tackling these phenomena.
Resumo:
Temperature modelling of human tissue subjected to ultrasound for therapeutic use is essencial for an accurate instrumental assessment and calibration. In this paper punctual temperature modeling of a homogeneous medium, radiated by therapeutic ultrasound, is presented.
Resumo:
Fractional order modeling of biological systems has received significant interest in the research community. Since the fractal geometry is characterized by a recurrent structure, the self-similar branching arrangement of the airways makes the respiratory system an ideal candidate for the application of fractional calculus theory. To demonstrate the link between the recurrence of the respiratory tree and the appearance of a fractional-order model, we develop an anatomically consistent representation of the respiratory system. This model is capable of simulating the mechanical properties of the lungs and we compare the model output with in vivo measurements of the respiratory input impedance collected in 20 healthy subjects. This paper provides further proof of the underlying fractal geometry of the human lungs, and the consequent appearance of constant-phase behavior in the total respiratory impedance.
Resumo:
It is widely accepted that solving programming exercises is fundamental to learn how to program. Nevertheless, solving exercises is only effective if students receive an assessment on their work. An exercise solved wrong will consolidate a false belief, and without feedback many students will not be able to overcome their difficulties. However, creating, managing and accessing a large number of exercises, covering all the points in the curricula of a programming course, in classes with large number of students, can be a daunting task without the appropriated tools working in unison. This involves a diversity of tools, from the environments where programs are coded, to automatic program evaluators providing feedback on the attempts of students, passing through the authoring, management and sequencing of programming exercises as learning objects. We believe that the integration of these tools will have a great impact in acquiring programming skills. Our research objective is to manage and coordinate a network of eLearning systems where students can solve computer programming exercises. Networks of this kind include systems such as learning management systems (LMS), evaluation engines (EE), learning objects repositories (LOR) and exercise resolution environments (ERE). Our strategy to achieve the interoperability among these tools is based on a shared definition of programming exercise as a Learning Object (LO).
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia QuÃmica e BioquÃmica