955 resultados para Nd-doped high silica glass


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A standard biostratigraphic system, based upon diatom datum levels previously correlated to the paleomagnetic record, was applied to Deep Sea Drilling Project Sites 501/504 and 505. Sedimentation appears to have been constant at the three sites, averaging 50 m/m.y. at Sites 501/504 and 60 m/m.y. at Site 505. Calcium carbonate is rather poorly preserved at both sites, because of depth of water and, at Sites 501/504, alteration by diagenesis. Siliceous microfossils are common and moderately well preserved at the three sites; at Sites 501/504, diatoms disappear abruptly below the first occurrence of chert. The uppermost Miocene diatom assemblage occurs just above chert and is characterized by a strong dominance of Thalassionema and Thalassiothrix, which implies very high silica production during the latest Miocene; the chert probably is derived from a similar assemblage. In the earliest Pliocene, silica production appears to have decreased sharply; about 3 Ma, preservation of calcium carbonate also diminished, suggesting a shoaling of the CCD. At 2 Ma, there occurred a short interval of low production of both calcium carbonate and silica, which lasted into the earliest Pleistocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo do estudo foi avaliar a influência da densidade tubular em diferentes profundidades dentinárias na estabilidade de união de dois cimentos de ionômero de vidro (CIV) de alta viscosidade. Vinte terceiros molares foram alocados em 6 grupos experimentais, de acordo com a profundidade da dentina - proximal, oclusal superficial ou oclusal profunda, e os CIVs - Fuji IX (GC Corp.) e Ketac(TM) Molar Easy Mix (3M/ESPE). Inicialmente os dentes foram cortados a fim de se obter fatias de aproximadamente 1 mm de espessura de dentina proximal, oclusal superficial e profunda. Em seguida, foi realizado uma análise topográfica das secções das diferentes superfícies e profundidades em microscopia confocal a laser (100X) para obtenção das médias da densidade tubular em cada profundidade. Cânulas de polietileno foram então posicionadas sobre as secções de dentina pré-tratadas e preenchidas pelos CIVs. Os espécimes foram armazenados em água destilada por 24 h e 12 meses a 37°C, em seguida foram submetidos ao ensaio de microcisalhamento (0,5 mm/min). Após o ensaio, foi realizada a análise do padrão de fratura em estereomicroscópio (400X). Os dados obtidos foram submetidos à Análise de Variância para dados repetidos, seguido do teste de Tukey (?=5%). Verificamos que a densidade dos túbulos dentinários, em diferentes profundidades de molares permanentes, é inversamente proporcional a resistência de união de cimentos de ionômero de vidro de alta viscosidade. Foi ainda observado em todos os grupos que a resistência de união após 24 horas é maior do que em 12 meses, indicando degradação da interface adesiva ao longo do tempo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concept of random lasers exploiting multiple scattering of photons in an amplifying disordered medium in order to generate coherent light without a traditional laser resonator has attracted a great deal of attention in recent years. This research area lies at the interface of the fundamental theory of disordered systems and laser science. The idea was originally proposed in the context of astrophysics in the 1960s by V.S. Letokhov, who studied scattering with "negative absorption" of the interstellar molecular clouds. Research on random lasers has since developed into a mature experimental and theoretical field. A simple design of such lasers would be promising for potential applications. However, in traditional random lasers the properties of the output radiation are typically characterized by complex features in the spatial, spectral and time domains, making them less attractive than standard laser systems in terms of practical applications. Recently, an interesting and novel type of one-dimensional random laser that operates in a conventional telecommunication fibre without any pre-designed resonator mirrors-random distributed feedback fibre laser-was demonstrated. The positive feedback required for laser generation in random fibre lasers is provided by the Rayleigh scattering from the inhomogeneities of the refractive index that are naturally present in silica glass. In the proposed laser concept, the randomly backscattered light is amplified through the Raman effect, providing distributed gain over distances up to 100km. Although an effective reflection due to the Rayleigh scattering is extremely small (~0.1%), the lasing threshold may be exceeded when a sufficiently large distributed Raman gain is provided. Such a random distributed feedback fibre laser has a number of interesting and attractive features. The fibre waveguide geometry provides transverse confinement, and effectively one-dimensional random distributed feedback leads to the generation of a stationary near-Gaussian beam with a narrow spectrum. A random distributed feedback fibre laser has efficiency and performance that are comparable to and even exceed those of similar conventional fibre lasers. The key features of the generated radiation of random distributed feedback fibre lasers include: a stationary narrow-band continuous modeless spectrum that is free of mode competition, nonlinear power broadening, and an output beam with a Gaussian profile in the fundamental transverse mode (generated both in single mode and multi-mode fibres).This review presents the current status of research in the field of random fibre lasers and shows their potential and perspectives. We start with an introductory overview of conventional distributed feedback lasers and traditional random lasers to set the stage for discussion of random fibre lasers. We then present a theoretical analysis and experimental studies of various random fibre laser configurations, including widely tunable, multi-wavelength, narrow-band generation, and random fibre lasers operating in different spectral bands in the 1-1.6μm range. Then we discuss existing and future applications of random fibre lasers, including telecommunication and distributed long reach sensor systems. A theoretical description of random lasers is very challenging and is strongly linked with the theory of disordered systems and kinetic theory. We outline two key models governing the generation of random fibre lasers: the average power balance model and the nonlinear Schrödinger equation based model. Recently invented random distributed feedback fibre lasers represent a new and exciting field of research that brings together such diverse areas of science as laser physics, the theory of disordered systems, fibre optics and nonlinear science. Stable random generation in optical fibre opens up new possibilities for research on wave transport and localization in disordered media. We hope that this review will provide background information for research in various fields and will stimulate cross-disciplinary collaborations on random fibre lasers. © 2014 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the characterization of the temperature and strain responses of fiber Bragg grating sensors by use of an interferometric interrogation technique to provide an absolute measurement of the grating wavelength. The fiber Bragg grating temperature response was found to be nonlinear over the temperature range -70°C to 80°C. The nonlinearity was observed to be a quadratic function of temperature, arising from the linear dependence on temperature of the thermo-optic coefficient of silica glass over this range, and is in good agreement with a theoretical model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the characterization of the temperature and strain responses of fiber Bragg grating sensors by use of an interferometric interrogation technique to provide an absolute measurement of the grating wavelength. The fiber Bragg grating temperature response was found to be nonlinear over the temperature range -70 °C to 80 °C. The nonlinearity was observed to be a quadratic function of temperature, arising from the linear dependence on temperature of the thermo-optic coefficient of silica glass over this range, and is in good agreement with a theoretical model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This time of year we look back at the year that has passed and make plans for the next year. I like to reflect on things that I have learnt and people that I have met, especially those who facilitated that learning. In 2009 I went to various conferences, The BCLA conference in Manchester, The Romanian Optical Society meeting in Brasov, Transylvania (where the university is actually on Vlad Tepes Street), The European Council for Optometry and Optics (ECOO) in Brno, Czech Republic, The American Academy of Optometry (AAO) in Orlando USA, The International Association of Contact Lens Educators (IACLE) meeting in Tianjin China and finally The Vereinigung Deutscher Contactlinsen-Spezialisten (VDCO) meeting in Jena. All were interesting places and thoroughly all were enjoyable conferences with their own highlights but I wanted to focus on Jena and one person I met there and his inspirational search for knowledge and the contributions he made in the field of contact lenses. Jena itself is a fascinating place and should be on the ‘must visit’ list of anyone involved in eye care. It is the birth place of Carl Zeiss of course and where he started his company. It is also the birth place of Ernst Abbe (physicist and optometrist and expert lens maker), and Otto Schott (chemist and technologist who made high quality glass. There are many road signs bearing witness to these famous pioneers. The optical museum is worth spending a few hours looking around too. I was invited to speak at the VDCO at the kind invitation from colleagues at the Jena School of Optometry, Professor Wolfgang Sickenberger and Professor Sebastian Marx. At this meeting I met 87-year-old Willi KAUE who was being awarded the Adolf Wilhelm Müller-Welt prize by the VDCO for contribution to contact lenses over his 60-year career. At the age of 15 Willi Kaue took up an apprenticeship to become an Optician in Germany in 1937. At this time he first heard about the scleral glass lenses made by the Carl Zeiss Company in Jena. This started his lifelong fascination which was to become his passion but not yet his career. During the war he was enlisted into military service but immediately after was back to his former career. In 1950 Willi corrected his own 3.5 dioptres of myopia with a plastic scleral lens. His fascination strengthened as for the first time he himself could experience a wider field of view than his spectacles gave him, less aberrations and less retinal minification. He also appreciated the fact that contact lenses did not cause pressure on the nose or ears and did not slide down his nose plus remained optically centred with his eye movements. He decided that form now on he would make fitting contact lenses his career. He travelled to London to learn more about contact lenses and how to fit them but initially did not find many willing teachers and to start with became largely self-taught. He wanted to know how to make scleral lenses. So far he only knew that pulverized polymethyl methacrylate (PMMA) was pressed and moulded. In 1951 he met Berlin optician Otto Marzock. He made his only scleral lenses from using military PMMA windshields. His process involved lathe cutting the lenses and resulted in lenses that were thinner than moulded ones. Willi developed a manufacturing method, using a rotary diamond drill, starting form the outer edge and towards the centre at a constant cut speed. This enabled him to make more reproducible lenses and in less time. His enthusiasm in the field was clear from the travels he made in the pursuit of advancement - travelling around Europe, South America, North America and Asia. In 1963 he visited George Nissel in Hemel Hempstead, England. Constantly thriving towards innovations Willi came across the new Naturalens from the USA made from HEMA at a congress in Marseille in 1969. Amongst his contributions to the field, was his own technique of fitting ocular prosthetics, using an alginate impression of the orbit. I was fortunate enough to have dinner with Willi Kaue and learnt more about his fascinating career through the patient interpreting skills of Hilmar Bussacker (the 2008 winner of the same award and the 2007 winner of the European Federation of the Contact Lens and IOL Industries Award). I look forward to 2010 with eager anticipation as to what I may learn and who I might meet!!! Copyright © 2009 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the inception of the international GEOTRACES program, studies investigating the distribution of trace elements and their isotopes in the global ocean have significantly increased. In spite of this large-scale effort, the distribution of neodymium isotopes (143Nd/144Nd) and concentrations ([Nd]) in the high latitude south Pacific is still understudied. Here we report dissolved Nd isotopes and concentrations from 11 vertical water column profiles from the south Pacific between South America and New Zealand. Results suggest that Ross Sea Bottom Water (RSBW) is represented by an epsilon-Nd value of ~ -7, and is thus more radiogenic than Circumpolar Deep Water (epsilon-Nd ~ -8). RSBW and its characteristic epsilon-Nd signature can be traced far into the SE Pacific until progressive mixing with ambient Lower Circumpolar Deep water (LCDW) dilutes this signal north of the Antarctic Polar Front (APF). The SW-NE trending Pacific-Antarctic Ridge restricts the advection of RSBW into the SW Pacific, where bottom water density, salinity, and epsilon-Nd values of -9 indicate the presence of bottom waters of an origin different from the Ross Sea. Neodymium concentrations show low surface concentrations and a linear increase with depth north of the Polar Front. South of the APF, surface [Nd] is high and increases with depth but remains almost constant below ~1000 m. This vertical and spatial [Nd] pattern follows the southward shoaling density surfaces of the Southern Ocean frontal system and hence suggests supply of Nd to the upper ocean through upwelling of Nd-rich deep water. Low particle abundance dominated by reduced opal production and seasonal sea ice cover likely contributes to the maintenance of the high upper ocean [Nd] south of the APF. The reported data highlights the use of Nd isotopes as a water mass tracer in the Southern Ocean, with the potential for paleocenaographic reconstructions, and contributes to an improved understanding of Nd biogeochemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les zéolithes étant des matériaux cristallins microporeux ont démontré leurs potentiels et leur polyvalence dans un nombre très important d’applications. Les propriétés uniques des zéolithes ont poussé les chercheurs à leur trouver constamment de nouvelles utilités pour tirer le meilleur parti de ces matériaux extraordinaires. Modifier les caractéristiques des zéolithes classiques ou les combiner en synergie avec d’autres matériaux se trouvent être deux approches viables pour trouver encore de nouvelles applications. Dans ce travail de doctorat, ces deux approches ont été utilisées séparément, premièrement avec la modification morphologique de la ZSM-12 et deuxièmement lors de la formation des matériaux de type coeur/coquille (silice mésoporeuses@silicalite-1). La ZSM-12 est une zéolithe à haute teneur en silice qui a récemment attiré beaucoup l’attention par ses performances supérieures dans les domaines de l’adsorption et de la catalyse. Afin de synthétiser la ZSM-12 avec une pureté élevée et une morphologie contrôlée, la cristallisation de la zéolithe ZSM-12 a été étudiée en détail en fonction des différents réactifs chimiques disponibles (agent directeur de structure, types de silicium et source d’aluminium) et des paramètres réactionnels (l’alcalinité, ratio entre Na, Al et eau). Les résultats présentés dans cette étude ont montré que, contrairement à l’utilisation du structurant organique TEAOH, en utilisant un autre structurant, le MTEAOH, ainsi que le Al(o-i-Pr)3, cela a permis la formation de monocristaux ZSM-12 monodisperses dans un temps plus court. L’alcalinité et la teneur en Na jouent également des rôles déterminants lors de ces synthèses. Les structures de types coeur/coquille avec une zéolithe polycristalline silicalite-1 en tant que coquille, entourant un coeur formé par une microsphère de silice mésoporeuse (tailles de particules de 1,5, 3 et 20-45 μm) ont été synthétisés soit sous forme pure ou chargée avec des espèces hôtes métalliques. Des techniques de nucléations de la zéolithe sur le noyau ont été utilisées pour faire croitre la coquille de façon fiable et arriver à former ces matériaux. C’est la qualité des produits finaux en termes de connectivité des réseaux poreux et d’intégrité de la coquille, qui permet d’obtenir une stéréosélectivité. Ceci a été étudié en faisant varier les paramètres de synthèse, par exemple, lors de prétraitements qui comprennent ; la modification de surface, la nucléation, la calcination et le nombre d’étapes secondaires de cristallisation hydrothermale. En fonction de la taille du noyau mésoporeux et des espèces hôtes incorporées, l’efficacité de la nucléation se révèle être influencée par la technique de modification de surface choisie. En effet, les microsphères de silice mésoporeuses contenant des espèces métalliques nécessitent un traitement supplémentaire de fonctionnalisation chimique sur leur surface externe avec des précurseurs tels que le (3-aminopropyl) triéthoxysilane (APTES), plutôt que d’utiliser une modification de surface avec des polymères ioniques. Nous avons également montré que, selon la taille du noyau, de deux à quatre traitements hydrothermaux rapides sont nécessaires pour envelopper totalement le noyau sans aucune agrégation et sans dissoudre le noyau. De tels matériaux avec une enveloppe de tamis moléculaire cristallin peuvent être utilisés dans une grande variété d’applications, en particulier pour de l’adsorption et de la catalyse stéréo-sélective. Ce type de matériaux a été étudié lors d’une série d’expériences sur l’adsorption sélective du glycérol provenant de biodiesel brut avec des compositions différentes et à des températures différentes. Les résultats obtenus ont été comparés à ceux utilisant des adsorbants classiques comme par exemple du gel de sphères de silice mésoporeux, des zéolithes classiques, silicalite-1, Si-BEA et ZSM-5(H+), sous forment de cristaux, ainsi que le mélange physique de ces matériaux références, à savoir un mélange silicalite-1 et le gel de silice sphères. Bien que le gel de sphères de silice mésoporeux ait montré une capacité d’adsorption de glycérol un peu plus élevée, l’étude a révélé que les adsorbants mésoporeux ont tendance à piéger une quantité importante de molécules plus volumineuses, telles que les « fatty acid methyl ester » (FAME), dans leur vaste réseau de pores. Cependant, dans l’adsorbant à porosité hiérarchisée, la fine couche de zéolite silicalite-1 microporeuse joue un rôle de membrane empêchant la diffusion des molécules de FAME dans les mésopores composant le noyau/coeur de l’adsorbant composite, tandis que le volume des mésopores du noyau permet l’adsorption du glycérol sous forme de multicouches. Finalement, cette caractéristique du matériau coeur/coquille a sensiblement amélioré les performances en termes de rendement de purification et de capacité d’adsorption, par rapport à d’autres adsorbants classiques, y compris le gel de silice mésoporeuse et les zéolithes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report a new method for fabricating rare-earth-doped silica glasses for laser materials obtained by sintering nanoporous silica glasses impregnated with rare-earth-doped ions. The fabricated materials have no residual pores and show good optical and mechanical properties. Good performance from a Nd3+-doped silica microchip laser operating at 1.064 mum is successfully demonstrated, suggesting that the fabricated silica glasses have potential for use as active materials for high-power solid-state lasers. (C) 2005 Optical Society of America.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Siloxane Polymer exhibits low loss in the 800-1500 nm range which varies between 0.01 and 0.66 dB cm1. It is for such low loss the material is one of the most promising candidates in the application of engineering passive and active optical devices [1, 2]. However, current polymer fabrication techniques do not provide a methodology which allows high structurally solubility of Er3+ ions in siloxane matrix. To address this problem, Yang et al.[3] demonstrated a channel waveguide amplifier with Nd 3+-complex doped polymer, whilst Wong and co-workers[4] employed Yb3+ and Er3+ co-doped polymer hosts for increasing the gain. In some recent research we demonstrated pulsed laser deposition of Er-doped tellurite glass thin films on siloxane polymer coated silica substrates[5]. Here an alternative methodology for multilayer polymer-glass composite thin films using Er3+ - Yb3+ co-doped phosphate modified tellurite (PT) glass and siloxane polymer is proposed by adopting combinatorial pulsed laser deposition (PLD). © 2011 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel heavy-metal chalcogenide glass doped with a high dysprosium ion (Dy(3+)) concentration was prepared by the well-established melt-quenching technique from high-purity elements. The results show that when Cadmium (Cd) is introduced into chalcogenide glass, the concentration of Dy(3+) ions doped in GeGaCdS glasses is markedly increased, the thermodynamic performance improves, and the difference between T(g) and T(x) is >120 degrees C. The Vickers microhardness is also modified greatly, about 245 kgf/mm(2). The optical spectra indicate that all absorption and emission bands of Dy(3+) are clearly observed and red-shifted with increasing Dy(3+) concentration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A large-scale process combined sonication with self-assembly techniques for the preparation of high-density gold nanoparticles supported on a [Ru(bpy)(3)](2+)-doped silica/Fe3O4 nanocomposite (GNRSF) is provided. The obtained hybrid nanomaterials containing Fe3O4 spheres have high saturation magnetization, which leads to their effective immobilization on the surface of an ITO electrode through simple manipulation by an external magnetic field (without the need of a special immobilization apparatus). Furthermore, this hybrid nanomaterial film exhibits a good and very stable electrochemiluminescence (ECL) behavior, which gives a linear response for tripropylamine (TPA) concentrations between 5 mu m and 0.21 mM, with a detection limit in the micromolar range. The sensitivity of this ECL sensor can be easily controlled by the amount of [Ru(bpy)(3)](2+) immobilized on the hybrid nanomaterials (that is, varying the amount of [Ru(bpy)(3)](2+) during GNRSF synthesis).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Evidence of high gain pumped by recombination has been observed in the 5g-4f transition at 11.1 nn in sodiumlike copper ions with use of a 20-J 2-ps Nd:glass laser system. The time- and space-integrated gain coefficient was 8.8 +/- 1.4 cm(-1), indicating a single-transit amplification of similar to 60 times. This experiment has shown that 2 ps is the optimum pulse duration to drive the sodiumlike copper recombination x-ray lasing at 11.1 nm. (C) 1996 Optical Society of America

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An upconversion random laser (RL) operating in the ultraviolet is reported for Nd 3+ doped fluoroindate glass powder pumped at 575 nm. The RL is obtained by the resonant excitation of the Nd 3+ state 2G 7/2 followed by energy transfer among two excited ions such that one ion in the pair decays to a lower energy state and the other is promoted to state 4D 7/2 from where it decays emitting light at 381 nm. The RL threshold of 30 kW/cm 2 was determined by monitoring the photoluminescence intensity as a function of the pump laser intensity. The RL pulses have time duration of 29 ns that is 50 times smaller than the decay time of the upconversion signal when the sample is pumped with intensities below the RL laser threshold. © 2011 Optical Society of America.