988 resultados para Nanostructured


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents a comparison of the X-ray transmission through microsized and nanosized materials. For this purpose CuO nanoparticles, with 13.4 nm average grain size, and CuO microparticles, with a mean particle size of 56 mu m, were incorporated separately to beeswax in a concentration of 5%. Results show that the transmission through the above material plates with microsized and nanosized CuO was almost the same for X-ray beams generated at 60 and 102 kV tube voltages. However, for the radiation beams generated at 26 and 30 kV tube voltages the X-rays are more attenuated by the nanostructured CuO plates by a factor of at least 14%. Results suggest that the difference in the low energy range may be due to the higher number of particles/gram in the plates designed with CuO nanoparticles and due to the grain size effect on the X-ray transmission. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combination of luminescent polymers and suitable energy-accepting materials may lead to a molecular-level control of luminescence in nanostructured films. In this study, the properties of layer-by-layer (LbL) films of polyp-phenylene vinylene) (PPV) were investigated with steady-state and time-resolved fluorescence spectroscopies, where fluorescence quenching was controlled by interposing inert polyelectrolyte layers between the PPV donor and acceptor layers made with either Congo Red (CR) or nickel tetrasulfonated phthalocyanine (NiTsPc). The dynamics of the excited state of PPV was affected by the energy-accepting layers, thus confirming the presence of resonant energy transfer mechanisms. Owing to the layered structured of both energy donor and acceptor units, energy transfer varied with the distance between layers, r, according to 1/r(n) with n = 2 or 3, rather than with 1/r(6) predicted by the Forster theory for interacting point dipoles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The assembly of carbon nanotubes (CNTs) into nanostructured films is attractive for producing functionalized hybrid materials and (bio-)chemical sensors, but this requires experimental methods that allow for control of molecular architecturcs. In this study, we exploit the layer-by-layer (LbL) technique to obtain two types of sensors incorporating CNTs. In the first, LbL films of alternating layers of multi-walled carbon nanotubes (MWNTs) dispersed in polyarninoamide (PAMAM) dendrimers and nickel phthalocyanine (NiTsPc) were used in amperometric detection of the neurotransmitter dopamine (DA). The electrochemical properties evaluated with cyclic voltammetry indicated that the incorporation of MWNTs in the PAMAM-NT/NiTsPc LbL films led to a 3-fold increase in the peak current, in addition to a decrease of 50 mV in the oxidation potential of DA. The latter allowed detection of DA even in the presence of ascorbic acid (AA), a typical interferent for DA. Another LbL film was obtained with layers of PAMAM and single-walled carbon nanotubes (SWNTs) employed in field-effect-devices using a capacitive electrolyte-insulator-semiconductor structure (EIS). The adsorption of the film components was monitored by measuring the flat-band voltage shift in capacitance-voltage (C-P) curves, caused by the charges from the components. Constant capacitance (ConCap) measurements showed that the EISPAMAM/SWNT film displayed a high pH sensitivity (ca. 54.5 mV/pH), being capable of detecting penicillin G between 10(-4) mol L(-1) and 10(-2) mol L-1, when a layer of penicillinase was adsorbed atop the PAMAM/SWNT film. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The selective determination of alcohol molecules either in aqueous solutions or in vapor phase is of great importance for several technological areas. In the last years, a number of researchers have reported the fabrication of highly sensitive sensors for ethanol detection, based upon specific enzymatic reactions occurring at the surface of enzyme-containing electrodes. In this study, the enzyme alcohol dehydrogenase (ADH) was immobilized in a layer-by-layer fashion onto Au-interdigitated electrodes (IDEs), in conjunction with layers of PAMAM dendrimers. The immobilization process was followed in Teal time using quartz crystal microbalance (QCM), indicating that an average mass of 52.1 ng of ADH was adsorbed at each deposition step. Detection was carried out using a novel strategy entirely based upon electrical capacitance measurements, through which ethanol could be detected at concentrations of 1 part per million by volume (ppmv). (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electroactive nanostructured membranes have been produced by the layer-by-layer (LbL) technique, and used to make electrochemical enzyme biosensors for glucose by modification with cobalt hexacyanoferrate redox mediator and immobilisation of glucose oxidase enzyme. Indium tin oxide (ITO) glass electrodes were modified with up to three bilayers of polyamidoamine (PAMAM) dendrimers containing gold nanoparticles and poly(vinylsulfonate) (PVS). The gold nanoparticles were covered with cobalt hexacyanoferrate that functioned as a redox mediator, allowing the modified electrode to be used to detect H(2)O(2), the product of the oxidase enzymatic reaction, at 0.0 V vs. SCE. Enzyme was then immobilised by cross-linking with glutaraldehyde. Several parameters for optimisation of the glucose biosensor were investigated, including the number of deposited bilayers, the enzyme immobilisation protocol and the concentrations of immobilised enzyme and of the protein that was crosslinked with PAMAM. The latter was used to provide glucose oxidase with a friendly environment, in order to preserve its bioactivity. The optimised biosensor, with three bilayers, has high sensitivity and operational stability, with a detection limit of 6.1 mu M and an apparent Michaelis-Menten constant of 0.20 mM. It showed good selectivity against interferents and is suitable for glucose measurements in natural samples. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of carbon nanotubes (CNTs) combined with other materials in nanostructured films has demonstrated their versatility in tailoring specific properties. In this study, we produced layer-by-layer (LbL) films of polyamidoamine-PAMAM-incorporating multiwalled carbon nanotubes (PAMAM-NT) alternated with nickel tetrasulfonated metallophthalocyanine (NiTsPc), in which the incorporation of CNTs enhanced the NiTsPc redox process and its electrocatalytic properties for detecting dopamine. Film growth was monitored by UV-vis spectroscopy, which pointed to an exponential growth of the multilayers, whose roughness increased with the number of bilayers according to atomic force microscopy (AFM) analysis. Strong interactions between -NH3+ terminal groups from PAMAM and -SO3- from NiTsPc were observed via infrared spectroscopy, while the micro-Raman spectra confirmed the adsorption of carbon nanotubes (CNTs) onto the LbL film containing NiTsPc. Cyclic voltammograms presented well-defined electroactivity with a redox pair at 0.86 and 0.87 V, reversibility, a charge-transfer controlled process, and high stability up to 100 cycles. The films were employed successfully in dopamine (DA) detection, with limits of detection and quantification of 10(-7) and 10(-6) mol L-1, respectively. Furthermore, films containing immobilized CNTs could distinguish between DA and its natural interferent, ascorbic acid (AA).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the assembly of layer-by-layer films based on the poly(propylene imine) dendrimer (PPID) generation 3 and nickel tetrasulfonated phthalocyanine (NiTsPc) for application as chemically sensitive membranes in sepal alive extended-gate field effect transistor (SEGFET) pH sensors PPID/NiTsPc films wet e adsorbed on quartz, glass. indium tin oxide. or gold (Au)-covered glass substrates Multilayer formation was monitored via UV-vis absorption upon following the increment in the Q-band intensity (615 nm) of NiTsPc The nanostructured membranes were very stable in a pH range of 4-10 and displayed a good sensitivity toward H(+), ca 30 mV/pH for PPID/N(1)TsPc films deposited on Au-covered substrates For films deposited on ITO, the sensitivity was ca 52 4 mV/pH. close to the expected theoretical value for ton-sensitive membranes. The use of chemically stable PPID/NiTsPc films as gate membranes in SEGFETs, as introduced here, may represent an alternative for the fabrication of nanostructured, porous platforms for enzyme immobilization to be used in enzymatic biosensors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrostatic layer-by-layer technique has been exploited as an useful strategy for fabrication of nanostructured thin films, in which specific properties can be controlled at the molecular level. Ferrofluids consist of a colloidal suspension of magnetic grains (with only a few nanometers of diameter) with present interesting physical properties and applications, ranging from telecommunication to drug delivery systems. In this article, we developed a new strategy to manipulate ferrofluids upon their immobilization in nanostructured layered films in conjunction with conventional polyelectrolytes using the layer-by-layer technique. We investigated the morphological, optical, and magnetic properties of the immobilized ferrofluid as a function of number of bilayers presented in the films. Ferrofluid/polyelectrolyte multilayers homogeneously covered the substrates surface, and the magnetic and optical properties of films exhibited a linear dependence on the number of bilayers adsorbed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study describes the development of amperometric sensors based on poly(allylamine hydrochloride) (PAH) and lutetium bisphthalocyanine (LuPc(2)) films assembled using the Layer-by-Layer (LbL) technique. The films have been used as modified electrodes for catechol quantification. Electrochemical measurements have been employed to investigate the catalytic properties of the LuPc(2) immobilized in the LbL films. By chronoamperometry, the sensors present excellent sensitivity (20 nA mu M(-1)) in a wide linear range (R(2) = 0.994) up to 900 mu M and limit of detection (s/n = 3) of 37.5 x 10(-8) M for catechol. The sensors have good reproducibility and can be used at least for ten times. The work potential is +0.3 V vs. saturated calomel electrode (SCE). In voltammetry measurements, the calibration curve shows a good linearity (R(2) = 0.992) in the range of catechol up to 500 mu M with a sensitivity of 90 nA mu M(-1) and LD of 8 mu M. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Artificial vesicles or liposomes composed of lipid bilayers have been widely exploited as building blocks for artificial membranes, in attempts to mimic membrane interaction with drugs and proteins and to investigate drug delivery processes. In this study we report on the immobilization of liposomes of 1,2-dipalmitoyi-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (Sodium Salt) (DPPG) in layer-by-layer (LbL) films, alternated with poly (amidoamine) G4 (PAMAM) dendrimer layers. The average size of the liposomes in solution was 120 nm as determined by dynamic light scattering, with their spherical shape being inferred from scanning electron microscopy (SEM) in cast films. LbL films containing up to 20 PAMAM/DPPG bilayers were assembled onto glass and/or silicon wafer substrates. The growth of the multilayers was achieved by alternately immersing the substrates into the PAMAM and DPPG solutions for 5 and 10 min, respectively. The formation of PAMAM/DPPG liposome multilayers and its ability to interact with BSA were confirmed by Fourier transform infrared spectroscopy (FTIR). The structural features and film thickness were obtained using X-ray diffraction and surface plasmon resonance (SPR). (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Akaganeite is a very rare iron oxyhydroxide in nature. It can be obtained by many synthetic routes, but thermohydrolysis is the most common method reported in the literature. In this work, akaganeite-like materials were prepared through the thermohydrolysis of FeCl(3)center dot 6H(2)O in water and suspensions containing clay minerals. X-ray diffractometry (XRD), Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM) data show that the clays determine the crystal phase and size of the iron oxyhydroxide crystals. According to XRD and FTIR data, beta-FeO(OH) (akaganeite) is the main metal oxyhydroxide phase. Considering the small basal spacing (d(0 0 1)) displacement observed when comparing the XRD patterns of pristine clays with the composites containing beta-FeO(OH), the iron oxyhydroxide should be mostly located on the basal and edge surfaces of the clay minerals. UV-Vis electronic absorption spectra indicate that the preferred phase of the iron oxyhydroxide is determined by the nature of the clay minerals. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A carbon micro/nanostructured composite based on cup-stacked carbon nanotubes (CSCNTs) grown onto a carbon felt has been found to be an efficient matrix for enzyme immobilization and chemical signal transduction. The obtained CSCNT/felt was modified with a copper hexacyanoferrate/polypyrrole (CuHCNFe/Ppy) hybrid mediator, and the resulting composite electrode was applied to H(2)O(2) detection, achieving a sensitivity of 194 +/- 15 mu A mmol(-1) L. The results showed that the CSCNT/felt matrix significantly increased the sensitivity of CuHCNFe/Ppy-based sensors compared to those prepared on a felt unrecovered by CSCNTs. Our data revealed that the improved sensitivity of the as-prepared CuHCNFe/Ppy-CSCNT/felt composite electrode can be attributed to the electronic interactions taking place among the CuHCNFe nanocrystals, Ppy layer and CSCNTs. In addition, the presence of CSCNTs also seemed to favor the dispersion of CuHCNFe nanocrystals over the Ppy matrix, even though the CSCNTs were buried under the conducting polymer layer. The CSCNT/felt matrix also enabled the preparation of a glucose biosensor whose sensitivity could be tuned as a function of the number of glucose oxidase (GOx) layers deposited through a Layer-by-Layer technique with an sensitivity of 11 +/- 2 mu A mmol(-1) L achieved at 15 poly(diallyldimethylammoniumchloride)/GOx bilayers. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocomposites of carbon nanotubes and titanium dioxide (TiO(2)) have attracted much attention due to their photocatalytic properties. Although many examples in the literature have visualized these nanocomposites by electron microscopic images, spectroscopic characterization is still lacking with regard to the interaction between the carbon nanotube and TiO(2). In this work, we show evidence of the attachment of nanostructured TiO(2) to multiwalled carbon nanotubes(MWNTs) by Raman spectroscopy. The nanostructured TiO(2) was characterized by both full-width at half-maximum (FWHM) and the Raman shift of the TiO(2) band at ca 144 cm(-1), whereas the average diameter of the crystallite was estimated as approximately 7 nm. Comparison of the Raman spectra of the MWNTs and MWNTs/TiO(2) shows a clear inversion of the relative intensities of the G and D bands, suggesting a substantial chemical modification of the outermost tubes due to the attachment of nanostructured TiO(2). To complement the nanocomposite characterization, scanning electronic microscopy and X-ray diffraction were performed. Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper describes the catalytic oxidation of urea performed by nickel hydroxide and nickel/cobalt hydroxide modified electrodes by using both electrodeposited films and nanoparticles. The incorporation of Co foreign atoms leads to a slight increase in sensitivity besides the shift in redox process, avoiding the oxygen reaction. Nanostructured Ni80Co20(OH)(2) was synthesized by sonochemical route producing 5 nm diameter particles characterized by high-resolution transmission electron microscopy (HRTEM) being immobilized onto electrode by using the electrostatic Layer-by-layer technique, yielding attractive modified electrodes for sensor development. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of a carbon paste electrode (CPE) modified with SBA-15 nanostructured silica organofunctionalised with 2-benzothiazolethiol in the simultaneous determination of Pb(II), Cu(II) and Hg(II) ions in natural water and sugar cane spirit (cachaca) is described. Pb(II), Cu(II) and Hg(II) were pre-concentrated on the surface of the modified electrode by complexing with 2-benzothiazolethiol and reduced at a negative potential (-0.80 V). Then the reduced products were oxidised by DPASV procedure. The fact that three stripping peaks appeared on the voltammograms at the potentials of -0.48 V (Pb2+), -0.03 V (Cu2+) and +0.36 V (Hg2+) in relation to the SCE, demonstrates the possibility of simultaneous determination of Pb2+, Cu2+ and Hg2+. The best results were obtained under the following optimised conditions: 100 mV pulse amplitude, 3 min accumulation time, 25 mV s(-1) scan rate in phosphate solution pH 3.0. Using such parameters, calibration graphs were linear in the concentration ranges of 3.00-70.0 x 10(-7) mol L-1 (Pb2+), 8.00-100.0 X 10(-7) mol L-1 (Cu2+) and 2.00-10.0 x 10(-6) mol L-1 (Hg2+). Detection limits of 4.0 x 10(-8) mol L-1 (Pb2+), 2.0 x 10(-7) mol L-1 (Cu2+) and 4.0 x 10(-7) mol L-1 (Hg2+) were obtained at the signal noise ratio (SNR) of 3. The results indicate that this electrode is sensitive and effective for simultaneous determination of Pb2+, Cu2+ and Hg2+ in the analysed samples. (C) 2008 Published by Elsevier B.V.