283 resultados para Nanofibras de carbón
Resumo:
Incluye Bibliografía
Resumo:
Incluye Bibliografía
Resumo:
Incluye Bibliografía
Resumo:
Incluye Bibliografía
Resumo:
Incluye Bibliografía
Resumo:
Incluye Bibliografía
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Incluye Bibliografía
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
The nanostructured materials over the last decade have been increasing the variety of studies and research applications in many industries. From the understanding and manipulation of nanoscale is possible to obtain high-performance materials. One method, which has been very effective in obtaining of nanostructured composites, is the electrospinning, a technique that uses electrostatic forces to produce fibers from a polymer solution. By understanding and controlling of process conditions, such as solution viscosity, working distance, the velocity of the collector, applied voltage and others conditions, it is possible to obtain fibers in many different morphologies. This work aims to obtain nanostructured composites from polysulfone (PSU) a thermoplastic polymer with high oxidation resistance and good mechanical strength at high temperatures and carbon nanotubes (CNTs) that are excellent reinforcements for polymer materials, their mechanical resistance is greater than that of all known materials; using the electrospinning process via polymer solution. Were used polysulfone solutions, n,n-ndimetil acetamide (PSU / DMAc) and this same solution added of CNTs in order to obtain the nanofibers. In both cases were analyzed the effectiveness of the process from the analysis of fiber diameters, rheological behavior and infrared spectroscopy. The results obtained confirmed the efficiency of the electrospinning process to obtain polymeric fibers
Resumo:
Pós-graduação em Ciência dos Materiais - FEIS
Resumo:
A presente invenção refere-se ao desenvolvimento de um nanocompósito de biocelulose e dietilditiocarbamato (CB-DETC) que é formado por uma matriz polimérica de celulose bacteriana com nanofibras revestidas com derivados de dietilditiocarbamato no preparo de um biocurativo para o controle de Leishmaniose Tegumentar. As principais propriedades observadas nesse biocompósito são a sua flexibilidade, fácil aplicação em lesões cutâneas, capacidade leishmanicida, ausência de toxicidade e liberação sustentada do composto ativo, reduzindo a necessidade de troca do curativo.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In heterogeneous catalysis, numerous elements such as titanium and iron have been studied as nanoscale catalysts, but little is known about the use of niobium in nanocatalysis. The nanostructured particles have intrinsic and different physicochemical characteristics with great potential for use in industrial scale. Brazil having the largest known worldwide niobium reserve has the great challenge of creating pioneering technologies with the metal. Biodiesel is an alternative fuel and renewable substitute for regular diesel. Being biodegradable, non-toxic and have CO2 emissions lower than regular diesel, it contributes to the environment and to the independence from oil. The aim of this work was initially synthesize nanoscale particles of niobium pentoxide (Nanospheres, nanorods, nanofibers, nanocubes) from the sol-gel technique. The characterization of different nanoscale structures obtained was performed using different analytical techniques such as x-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The synthesized nanometer niobium oxide will be used as a heterogeneous catalyst in biodiesel synthesis from commercial soybean oil, checking in detail what the effect of morphology is presented (Nanospheres, nanorods, nanofibers, nanocubes) in the yield of biodiesel synthesis, comparing these results with those already described in literature for the amorphous niobium oxide and other oxide catalysts. The biodiesel obtained was characterized by gas chromatography system equipped with a FID detector