946 resultados para NUMERICAL-MODEL
Resumo:
Mestrado em Engenharia Civil – Ramo Estruturas
Resumo:
Trabalho de Dissertação de Natureza Científica para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Estruturas
Resumo:
As ligações adesivas têm sido cada vez mais utilizadas nos últimos anos em detrimento de outros métodos tais como a soldadura, ligações aparafusadas e ligações rebitadas. Os plásticos de Engenharia têm um papel cada vez mais preponderante na indústria, devido às suas excelentes propriedades. Neste trabalho foram considerados três polímeros diferentes, o Policloreto de Vinilo (PVC) e o Polipropileno (PP) dado o seu baixo custo e peso e a superfície quimicamente inerte e o Politetrafluoretileno (PTFE) devido às suas boas propriedades químicas e excelentes propriedades de deslizamento. No entanto, estes materiais possuem uma baixa energia de superfície e, por isso, são muito difíceis de colar com mais relevância para o PTFE. Assim, após um estudo preliminar foi escolhido, para realizar as colagens necessárias, um adesivo da Tamarron Technology “Tam Tech Adhesive”, próprio para este tipo de substratos difíceis de colar. Posteriormente foi efetuada a sua caraterização através de ensaios de provetes maciços à tração. O principal objetivo deste trabalho foi estudar juntas de sobreposição simples de materiais poliméricos difíceis de colar tais como o PTFE, PP e PVC com recurso a um adesivo que não necessitasse de preparação de superfície. Foram fabricadas juntas de sobreposição simples (JSS) segundo os métodos Lap Shear (LS) e Block Shear (BS) dos três materiais referidos anteriormente e realizados os respetivos ensaios para avaliar o comportamento mecânico das ligações adesivas. Os materiais utilizados como substratos foram também submetidos a ensaios de tração com a finalidade de obter o módulo de elasticidade e as suas propriedades de resistência. Os substratos envolvidos nas juntas adesivas não sofreram qualquer preparação especial das superfícies. Na maioria dos casos consistiu apenas numa limpeza das superfícies com álcool etílico. Contudo, para o PTFE também se experimentou a preparação por abrasão com lixa e por chama. Foi também efetuado um trabalho de simulação numérica por elementos finitos utilizando um modelo de dano coesivo triangular. As resistências ao corte obtidas são superiores em BS comparativamente a LS, exceção feita aos substratos de PTFE aonde os resultados são similares. O tratamento por chama melhorou a resistência mecânica das juntas. Verificou-se também que o modelo numérico simulou adequadamente o comportamento das juntas principalmente das LS.
Resumo:
A presente tese surgiu da cooperação entre a empresa Semog Racing e o Instituto Superior de Engenharia do Porto, no âmbito da unidade curricular de DPEST, englobado no 2º ano do Mestrado de Engenharia Mecânica, ramo de Construções Mecânicas. Esta dissertação tem como objetivo principal, o projeto de um novo centro de roda para substituir o existente num veículo de competição da Semog Racing. Este centro deverá ser dimensionado para suportar o peso do veículo e os esforços transmitidos à roda. Pretende-se igualmente que o novo modelo apresente um design apelativo e um baixo custo de produção para poder vir ser a comercializado. Na primeira fase, será estudado o centro de roda original fornecido pela Semog Racing. Este estudo engloba a modelação do componente através do software SolidWorks® e uma fase de simulações para diferentes condições de carregamento. O estudo será complementado com a realização de ensaios experimentais para validação do modelo numérico. A segunda fase é dedicada ao desenvolvimento do novo modelo de centro de roda, focando as características mecânicas e o design. Este tem como base o estudo numérico realizado para a roda original, tendo sempre como objetivo final garantir que o novo centro de roda cumpra todos os requisitos. O caminho seguido no processo de otimização é suportado em simulações numéricas pelo método dos elementos finitos, o qual permite aferir quais os pontos críticos a corrigir. No final, será apresentado um novo modelo de centro de roda capaz de suportar as cargas previstas de serviço, que apresente um baixo custo de fabrico e design apelativo.
Resumo:
Com o atual estado da construção em Portugal, a reabilitação urbana é uma realidade. Com muitos dos edifícios a necessitarem de reforço, procurou-se abordar o comportamento real das estruturas, indo além da típica análise linear elástica. Desta forma, pretendeu-se aumentar o conhecimento acerca da modelação numérica não-linear de estruturas de betão armado, expondo modelos de cálculo relativamente simples e de fácil compreensão, com o objetivo de servir de base a uma avaliação da capacidade de carga de um elemento estrutural. O modelo de cálculo foi validado com recurso ao trabalho experimental de Bresler e Scordelis (1963). Analisou-se o comportamento até à rotura de três vigas ensaiadas à flexão. Posteriormente, foi realizado um estudo paramétrico de algumas propriedades do betão com vista à discussão do melhor de ajuste. Em seguida, já no campo do reforço estrutural, simulou-se numericamente vigas reforçadas com CFRP, com recurso à técnica EBR e NSM. Comparam-se os resultados numéricos com os ensaios experimentais de Cruz et al. (2011a). Avaliou-se ainda o desempenho de soluções alternativas com variações na área e comprimento dos laminados. Para finalizar, foi desenvolvida uma campanha experimental com diferentes áreas de reforço. Conceberam-se e executaram-se três vigas de betão armado sobre as quais se instalaram laminados de CFRP. Os resultados experimentais são apresentados e discutidos à luz dos resultados do respetivo modelo numérico. No cômputo geral, o presente trabalho permitiu aferir a validade de modelos não-lineares na previsão do comportamento efetivo das estruturas até à rotura. Assinala-se a concordância em vários resultados experimentais analisados. Ficaram também patentes os principais fenómenos ligados ao reforço de vigas com CFRP, focados nos respetivos modelos de cálculo e nos resultados experimentais apresentados.
Resumo:
A engenharia civil, rege-se pela garantia de segurança e de funcionalidade das obras que projeta e executa. Para cumprir tais requisitos, é necessário durante a sua vida útil, no final da construção, reforço ou reabilitação, proceder à avaliação da conformidade entre o comportamento real da estrutura e os pressupostos subjacentes ao projeto. Esta dissertação tem como objetivo a compreensão e análise do comportamento estrutural da Ponte sobre o Rio Sorraia, através da realização de ensaios de carga apoiados pela conceção de um modelo numérico devidamente calibrado, capaz de simular a resposta da estrutura, o mais próximo possível do observável na realidade. Para alcançar o objetivo pré definido elencam-se as metodologias relevantes, descrevem-se os tipos de ensaios de carga realizados em pontes/viadutos e faz-se referência aos aparelhos de medição que estão na base da instrumentação aplicada em obras. Esta introdução foca-se ainda na modelação numérica, permitindo o conhecimento básico necessário para a criação e atualização de modelos numéricos de pontes. Relativamente ao caso de estudo expõe-se a realização do ensaio de carga, descrevendo todo o processo, bem como os resultados obtidos ao nível das grandezas de medição estudadas. Aqui é concebido um modelo numérico base da ponte, alvo de discussão ao nível do comportamento estrutural, baseada na validação dos resultados obtidos por via experimental, através da comparação com os obtidos por via numérica. Por fim, o estudo e seleção de diversos parâmetros da modelação, facultando a calibração do modelo numérico da ponte. Os resultados obtidos neste modelo comprovam o seu elevado potencial, no apoio à observação e compreensão do comportamento de estruturas através da realização de ensaios de carga. O sucesso da realização de uma análise do comportamento de estruturas, através de ensaios de carga, depende assim fundamentalmente, da correta execução do ensaio, da correta conceção e atualização do modelo numérico e da interligação entre os resultados experimentais e numéricos.
Resumo:
A presente dissertação tem como objetivo principal a análise numérica do comportamento dinâmico de uma ponte ferroviária, sob ação de tráfego ligeiro ferroviário. Neste contexto são apresentados alguns fundamentos teóricos a ter em conta nestes domínios, visando uma melhor compreensão dos fenómenos existentes no comportamento dinâmico de pontes ferroviárias quando sujeitas ao tráfego. O caso de estudo teve como foco a ponte Luiz I, uma ponte metálica situada sobre o rio Douro, que liga as cidades do Porto e Vila Nova de Gaia, sob ação de tráfego ligeiro ferroviário no seu tabuleiro superior para a condição anterior aos trabalhos de reabilitação e reforço realizados entre 2004 e 2005. Para o efeito foi desenvolvido um modelo numérico de elementos finitos da ponte realizado com recurso ao programa ANSYS, assim como um modelo numérico do veículo do Metro de Lisboa. Com base nestes modelos foram obtidos os parâmetros modais, nomeadamente as frequências naturais e os modos de vibração de toda a estrutura e do veículo. O estudo do comportamento dinâmico da ponte foi realizado por intermédio de uma metodologia de cargas móveis e de interação veículo-estrutura, através da ferramenta computacional Train-Bridge Interaction (TBI). As análises dinâmicas foram efetuadas para a passagem dos veículos de passageiros das redes de Metros do Porto e Lisboa. Nestas análises é estudada a resposta da estrutura em função da variabilidade ao nível da secção transversal, dependência do tramo, influência do veículo, da sua velocidade de circulação e impacto das frequências de vibração estimadas pelo modelo numérico.
Resumo:
Thesis submitted to the Instituto Superior de Estatística e Gestão de Informação da Universidade Nova de Lisboa in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Information Management – Geographic Information Systems
Resumo:
This thesis is a study of how heat is transported in non-steady-state conditions from a superconducting Rutherford cable to a bath of superfluid helium (He II). The same type of superconducting cable is used in the dipole magnets of the Large Hadron Collider (LHC). The dipole magnets of the LHC are immersed in a bath of He II at 1.9 K. At this temperature helium has an extremely high thermal conductivity. During operation, heat needs to be efficiently extracted from the dipole magnets to keep their superconducting state. The thermal stability of the magnets is crucial for the operation of the LHC, therefore it is necessary to understand how heat is transported from the superconducting cables to the He II bath. In He II the heat transfer can be described by the Landau regime or by the Gorter-Mellink regime, depending on the heat flux. In this thesis both measurements and numerical simulation have been performed to study the heat transfer in the two regimes. A temperature increase of 8 2 mK of the superconducting cables was successfully measured experimentally. A new numerical model that covers the two heat transfer regimes has been developed. The numerical model has been validated by comparison with existing experimental data. A comparison is made between the measurements and the numerical results obtained with the developed model.
Resumo:
Composite materials have a complex behavior, which is difficult to predict under different types of loads. In the course of this dissertation a methodology was developed to predict failure and damage propagation of composite material specimens. This methodology uses finite element numerical models created with Ansys and Matlab softwares. The methodology is able to perform an incremental-iterative analysis, which increases, gradually, the load applied to the specimen. Several structural failure phenomena are considered, such as fiber and/or matrix failure, delamination or shear plasticity. Failure criteria based on element stresses were implemented and a procedure to reduce the stiffness of the failed elements was prepared. The material used in this dissertation consist of a spread tow carbon fabric with a 0°/90° arrangement and the main numerical model analyzed is a 26-plies specimen under compression loads. Numerical results were compared with the results of specimens tested experimentally, whose mechanical properties are unknown, knowing only the geometry of the specimen. The material properties of the numerical model were adjusted in the course of this dissertation, in order to find the lowest difference between the numerical and experimental results with an error lower than 5% (it was performed the numerical model identification based on the experimental results).
Resumo:
This paper aims to evaluate experimentally the potentialities of Hybrid Composite Plates (HCPs) technique for the shear strengthening of reinforced concrete (RC) beams that were previously subjected to intense damage in shear. HCP is a thin plate of Strain Hardening Cementitious Composite (SHCC) reinforced with Carbon Fiber Reinforced Polymer (CFRP) laminates. For this purpose, an experimental program composed of two series of beams (rectangular and T cross section) was executed to assess the strengthening efficiency of this technique. In the first step of this experimental program, the control beams, without steel stirrups, were loaded up to their shear failure, and fully unloaded. Then, these pre-damaged beams were shear strengthened by applying HCPs to their lateral faces by using a combination of epoxy adhesive and mechanical anchors. The bolts were applied with a certain torque in order to increase the concrete confinement. The obtained results showed that the increase of load carrying capacity of the damaged strengthened beams when HCPs were applied with epoxy adhesive and mechanical anchors was 2 and 2.5 times of the load carrying capacity of the corresponding reference beams (without HCPs) for the rectangular and T cross section beam series, respectively. To further explore the potentialities of the HCPs technique for the shear strengthening, the experimental tests were simulated using an advanced numerical model by a FEM-based computer program. After demonstration the good predictive performance of the numerical model, a parametric study was executed to highlight the influence of SHCC as an alternative for mortar, as well as the influence of torque level applied to the mechanical anchors, on the load carrying capacity of beams strengthened with the proposed technique.
Resumo:
The Our Lady of Conception church is located in village of Monforte (Portugal) and is not in use nowadays. The church presents structural damage and, consequently, a study was carried out. The study involved the survey of the damage, dynamic identification tests under ambient vibration and the numerical analysis. The church is constituted by the central nave, the chancel, the sacristy and the corridor to access the pulpit. The masonry walls present different thickness, namely 0.65 m in the chancel, 0.70 m in the sacristy, 0.92 in the central nave and 0.65 m in the corridor. The masonry walls present 8 buttresses with different dimensions. The total longitudinal and transversal dimensions of the church are equal to 21.10 m and 14.26 m, respectively. The survey of the damage showed that, in general, the masonry walls are in good conditions, with exception of the transversal walls of the nave, which present severe cracks. The arches of the vault presents also severe cracks along the central nave. As consequence, the infiltrations have increased the degradation of the vault and paintings. Furthermore, the foundations present settlements in the Southwest direction. The dynamic identification test were carried out under the action of ambient excitation of the wind and using 12 piezoelectric accelerometers of high sensitivity. The dynamic identification tests allowed to estimate the dynamic properties of the church, namely frequencies, mode shapes and damping ratios. A FEM numerical model was prepared and calibrated, based on the first four experimental modes estimated in the dynamic identification tests. The average error between the experimental and numerical frequencies of the first four modes is equal to 5%. After calibration of the numerical model, pushover analyses with a load pattern proportional to the mass, in the transversal and longitudinal direction of the church, were performed. The results of the analysis numerical allow to conclude that the most vulnerable direction of the church is in the transversal one and the maximum load factor is equal to 0.35.
Resumo:
Existing masonry structures are usually associated to a high seismic vulnerability, mainly due to the properties of the materials, weak connections between floors and load-bearing walls, high mass of the masonry walls and flexibility of the floors. For these reasons, the seismic performance of existing masonry structures has received much attention in the last decades. This study presents the parametric analysis taking into account the deviations on features of the gaioleiro buildings - Portuguese building typology. The main objective of the parametric analysis is to compare the seismic performance of the structure as a function of the variations of its properties with respect to the response of a reference model. The parametric analysis was carried out for two types of structural analysis, namely for the non-linear dynamic analysis with time integration and for the pushover analysis with distribution of forces proportional to the inertial forces of the structure. The Young's modulus of the masonry walls, Young's modulus of the timber floors, the compressive and tensile non-linear properties (strength and fracture energy) were the properties considered in both type of analysis. Additionally, in the dynamic analysis, the influences of the vis-cous damping and of the vertical component of the earthquake were evaluated. A pushover analysis proportional to the modal displacement of the first mode in each direction was also carried out. The results shows that the Young's modulus of the masonry walls, the Young's modulus of the timber floors and the compressive non-linear properties are the pa-rameters that most influence the seismic performance of this type of tall and weak existing masonry structures. Furthermore, it is concluded that that the stiffness of the floors influences significantly the strength capacity and the collapse mecha-nism of the numerical model. Thus, a study on the strengthening of the floors was also carried out. The increase of the thickness of the timber floors was the strengthening technique that presented the best seismic performance, in which the reduction of the out-of-plane displacements of the masonry walls is highlighted.
Resumo:
A conventional method for seismic strengthening of masonry walls is externally application of reinforced concrete layer (shotcrete). However, due to the lack of analytical and experimental information on the behavior of strengthened walls, the design procedures are usually followed based on the empirical relations. Using these design procedures have resulted in massive strengthening details in retrofitting projects. This paper presents a computational framework for nonlinear analysis of strengthened masonry walls and its versatility has been verified by comparing the numerical and experimental results. Based on the developed numerical model and available experimental information, design relations and failure modes are proposed for strengthened walls in accordance with the ASCE 41 standard. Finally, a sample masonry structure has been strengthened using the proposed and available conventional methods. It has been shown that using the proposed method results in lower strengthening details and appropriate (ductile) failure modes
Resumo:
The dearth of knowledge on the load resistance mechanisms of log houses and the need for developing numerical models that are capable of simulating the actual behaviour of these structures has pushed efforts to research the relatively unexplored aspects of log house construction. The aim of the research that is presented in this paper is to build a working model of a log house that will contribute toward understanding the behaviour of these structures under seismic loading. The paper presents the results of a series of shaking table tests conducted on a log house and goes on to develop a numerical model of the tested house. The finite element model has been created in SAP2000 and validated against the experimental results. The modelling assumptions and the difficulties involved in the process have been described and, finally, a discussion on the effects of the variation of different physical and material parameters on the results yielded by the model has been drawn up.