933 resultados para NUMERICAL SIMULATION


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The need for renewable energy sources, facing the consequences of Climate Change, results in growing investment for solar collectors’ use. Research in this field has accompanied this expansion and evacuated tube solar collector stands as an important study focus. Thus, several works have been published for representing the stratification of the fluid inside the tubes and the reservoir, as well as analytical modeling for the heat flow problem. Based on recent publications, this paper proposes the study of solar water heating with evacuated tubes, their operation characteristics and operating parameters. To develop this work, a computational tool will be used - in this case, the application of computational fluid dynamics (CFD) software. In possession of the implemented model, a numerical simulation will be performed to evaluate the behavior of the fluid within this solar collector and possible improvements to be applied in the model.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

One of the greatest problems found in machining is related to the cutting tool wear. A way for increasing the tool life points out to the development of materials more resistant to wear, such as PCBN inserts. However, the unit cost of these tools is considerable high, around 10 to 20 times compared to coated carbide insert, besides its better performance occurs in high speeds requiring modern machine tools. Another way, less studied is the workpiece heating in order to diminish the shear stress material and thus reduce the machining forces allowing an increase of tool life. For understanding the heat transfer influences by conduction in this machining process, a mathematical model was developed to allow a simplified numerical simulation, using the finite element method, in order to determine the temperature profiles inside the workpiece.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mach number and thermal effects on the mechanisms of sound generation and propagation are investigated in spatially evolving two-dimensional isothermal and non-isothermal mixing layers at Mach number ranging from 0.2 to 0.4 and Reynolds number of 400. A characteristic-based formulation is used to solve by direct numerical simulation the compressible Navier-Stokes equations using high-order schemes. The radiated sound is directly computed in a domain that includes both the near-field aerodynamic source region and the far-field sound propagation. In the isothermal mixing layer, Mach number effects may be identified in the acoustic field through an increase of the directivity associated with the non-compactness of the acoustic sources. Baroclinic instability effects may be recognized in the non-isothermal mixing layer, as the presence of counter-rotating vorticity layers, the resulting acoustic sources being found less efficient. An analysis based on the acoustic analogy shows that the directivity increase with the Mach number can be associated with the emergence of density fluctuations of weak amplitude but very efficient in terms of noise generation at shallow angle. This influence, combined with convection and refraction effects, is found to shape the acoustic wavefront pattern depending on the Mach number.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper deals with the numerical solution of complex fluid dynamics problems using a new bounded high resolution upwind scheme (called SDPUS-C1 henceforth), for convection term discretization. The scheme is based on TVD and CBC stability criteria and is implemented in the context of the finite volume/difference methodologies, either into the CLAWPACK software package for compressible flows or in the Freeflow simulation system for incompressible viscous flows. The performance of the proposed upwind non-oscillatory scheme is demonstrated by solving two-dimensional compressible flow problems, such as shock wave propagation and two-dimensional/axisymmetric incompressible moving free surface flows. The numerical results demonstrate that this new cell-interface reconstruction technique works very well in several practical applications. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work, we considered the flow around two circular cylinders of equal diameter placed in tandem with respect to the incident uniform flow. The upstream cylinder was fixed and the downstream cylinder was completely free to move in the cross-stream direction, with no spring or damper attached to it. The centre-to-centre distance between the cylinders was four diameters, and the Reynolds number was varied from 100 to 645. We performed two- and three-dimensional simulations of this flow using a Spectral/hp element method to discretise the flow equations, coupled to a simple Newmark integration routine that solves the equation of the dynamics of the cylinder. The differences of the behaviours observed in the two- and three-dimensional simulations are highlighted and the data is analysed under the light of previously published experimental results obtained for higher Reynolds numbers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The reduction of friction and wear in systems presenting metal-to-metal contacts, as in several mechanical components, represents a traditional challenge in tribology. In this context, this work presents a computational study based on the linear Archard's wear law and finite element modeling (FEM), in order to analyze unlubricated sliding wear observed in typical pin on disc tests. Such modeling was developed using finite element software Abaqus® with 3-D deformable geometries and elastic–plastic material behavior for the contact surfaces. Archard's wear model was implemented into a FORTRAN user subroutine (UMESHMOTION) in order to describe sliding wear. Modeling of debris and oxide formation mechanisms was taken into account by the use of a global wear coefficient obtained from experimental measurements. Such implementation considers an incremental computation for surface wear based on the nodal displacements by means of adaptive mesh tools that rearrange local nodal positions. In this way, the worn track was obtained and new surface profile is integrated for mass loss assessments. This work also presents experimental pin on disc tests with AISI 4140 pins on rotating AISI H13 discs with normal loads of 10, 35, 70 and 140 N, which represent, respectively, mild, transition and severe wear regimes, at sliding speed of 0.1 m/s. Numerical and experimental results were compared in terms of wear rate and friction coefficient. Furthermore, in the numerical simulation the stress field distribution and changes in the surface profile across the worn track of the disc were analyzed. The applied numerical formulation has shown to be more appropriate to predict mild wear regime than severe regime, especially due to the shorter running-in period observed in lower loads that characterizes this kind of regime.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Technology scaling increasingly emphasizes complexity and non-ideality of the electrical behavior of semiconductor devices and boosts interest on alternatives to the conventional planar MOSFET architecture. TCAD simulation tools are fundamental to the analysis and development of new technology generations. However, the increasing device complexity is reflected in an augmented dimensionality of the problems to be solved. The trade-off between accuracy and computational cost of the simulation is especially influenced by domain discretization: mesh generation is therefore one of the most critical steps and automatic approaches are sought. Moreover, the problem size is further increased by process variations, calling for a statistical representation of the single device through an ensemble of microscopically different instances. The aim of this thesis is to present multi-disciplinary approaches to handle this increasing problem dimensionality in a numerical simulation perspective. The topic of mesh generation is tackled by presenting a new Wavelet-based Adaptive Method (WAM) for the automatic refinement of 2D and 3D domain discretizations. Multiresolution techniques and efficient signal processing algorithms are exploited to increase grid resolution in the domain regions where relevant physical phenomena take place. Moreover, the grid is dynamically adapted to follow solution changes produced by bias variations and quality criteria are imposed on the produced meshes. The further dimensionality increase due to variability in extremely scaled devices is considered with reference to two increasingly critical phenomena, namely line-edge roughness (LER) and random dopant fluctuations (RD). The impact of such phenomena on FinFET devices, which represent a promising alternative to planar CMOS technology, is estimated through 2D and 3D TCAD simulations and statistical tools, taking into account matching performance of single devices as well as basic circuit blocks such as SRAMs. Several process options are compared, including resist- and spacer-defined fin patterning as well as different doping profile definitions. Combining statistical simulations with experimental data, potentialities and shortcomings of the FinFET architecture are analyzed and useful design guidelines are provided, which boost feasibility of this technology for mainstream applications in sub-45 nm generation integrated circuits.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A way to investigate turbulence is through experiments where hot wire measurements are performed. Analysis of the in turbulence of a temperature gradient on hot wire measurements is the aim of this thesis work. Actually - to author's knowledge - this investigation is the first attempt to document, understand and ultimately correct the effect of temperature gradients on turbulence statistics. However a numerical approach is used since instantaneous temperature and streamwise velocity fields are required to evaluate this effect. A channel flow simulation at Re_tau = 180 is analyzed to make a first evaluation of the amount of error introduced by temperature gradient inside the domain. Hot wire data field is obtained processing the numerical flow field through the application of a proper version of the King's law, which connect voltage, velocity and temperature. A drift in mean streamwise velocity profile and rms is observed when temperature correction is performed by means of centerline temperature. A correct mean velocity pro�le is achieved correcting temperature through its mean value at each wall normal position, but a not negligible error is still present into rms. The key point to correct properly the sensed velocity from the hot wire is the knowledge of the instantaneous temperature field. For this purpose three correction methods are proposed. At the end a numerical simulation at Re_tau =590 is also evaluated in order to confirm the results discussed earlier.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The subject of this work is the diffusion of turbulence in a non-turbulent flow. Such phenomenon can be found in almost every practical case of turbulent flow: all types of shear flows (wakes, jet, boundary layers) present some boundary between turbulence and the non-turbulent surround; all transients from a laminar flow to turbulence must account for turbulent diffusion; mixing of flows often involve the injection of a turbulent solution in a non-turbulent fluid. The mechanism of what Phillips defined as “the erosion by turbulence of the underlying non-turbulent flow”, is called entrainment. It is usually considered to operate on two scales with different mechanics. The small scale nibbling, which is the entrainment of fluid by viscous diffusion of turbulence, and the large scale engulfment, which entraps large volume of flow to be “digested” subsequently by viscous diffusion. The exact role of each of them in the overall entrainment rate is still not well understood, as it is the interplay between these two mechanics of diffusion. It is anyway accepted that the entrainment rate scales with large properties of the flow, while is not understood how the large scale inertial behavior can affect an intrinsically viscous phenomenon as diffusion of vorticity. In the present work we will address then the problem of turbulent diffusion through pseudo-spectral DNS simulations of the interface between a volume of decaying turbulence and quiescent flow. Such simulations will give us first hand measures of velocity, vorticity and strains fields at the interface; moreover the framework of unforced decaying turbulence will permit to study both spatial and temporal evolution of such fields. The analysis will evidence that for this kind of flows the overall production of enstrophy , i.e. the square of vorticity omega^2 , is dominated near the interface by the local inertial transport of “fresh vorticity” coming from the turbulent flow. Viscous diffusion instead plays a major role in enstrophy production in the outbound of the interface, where the nibbling process is dominant. The data from our simulation seems to confirm the theory of an inertially stirred viscous phenomenon proposed by others authors before and provides new data about the inertial diffusion of turbulence across the interface.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ability to represent the transport and fate of an oil slick at the sea surface is a formidable task. By using an accurate numerical representation of oil evolution and movement in seawater, the possibility to asses and reduce the oil-spill pollution risk can be greatly improved. The blowing of the wind on the sea surface generates ocean waves, which give rise to transport of pollutants by wave-induced velocities that are known as Stokes’ Drift velocities. The Stokes’ Drift transport associated to a random gravity wave field is a function of the wave Energy Spectra that statistically fully describe it and that can be provided by a wave numerical model. Therefore, in order to perform an accurate numerical simulation of the oil motion in seawater, a coupling of the oil-spill model with a wave forecasting model is needed. In this Thesis work, the coupling of the MEDSLIK-II oil-spill numerical model with the SWAN wind-wave numerical model has been performed and tested. In order to improve the knowledge of the wind-wave model and its numerical performances, a preliminary sensitivity study to different SWAN model configuration has been carried out. The SWAN model results have been compared with the ISPRA directional buoys located at Venezia, Ancona and Monopoli and the best model settings have been detected. Then, high resolution currents provided by a relocatable model (SURF) have been used to force both the wave and the oil-spill models and its coupling with the SWAN model has been tested. The trajectories of four drifters have been simulated by using JONSWAP parametric spectra or SWAN directional-frequency energy output spectra and results have been compared with the real paths traveled by the drifters.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Laterally loaded piles are a typical situation for a large number of cases in which deep foundations are used. Dissertation herein reported, is a focus upon the numerical simulation of laterally loaded piles. In the first chapter the best model settings are largely discussed, so a clear idea about the effects of interface adoption, model dimension, refinement cluster and mesh coarseness is reached. At a second stage, there are three distinct parametric analyses, in which the model response sensibility is studied for variation of interface reduction factor, Eps50 and tensile cut-off. In addition, the adoption of an advanced soil model is analysed (NGI-ADP). This was done in order to use the complex behaviour (different undrained shear strengths are involved) that governs the resisting process of clay under short time static loads. Once set a definitive model, a series of analyses has been carried out with the objective of defining the resistance-deflection (P-y) curves for Plaxis3D (2013) data. Major results of a large number of comparisons made with curves from API (America Petroleum Institute) recommendation are that the empirical curves have almost the same ultimate resistance but a bigger initial stiffness. In the second part of the thesis a simplified structural preliminary design of a jacket structure has been carried out to evaluate the environmental forces that act on it and on its piles foundation. Finally, pile lateral response is studied using the empirical curves.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this work is to present various aspects of numerical simulation of particle and radiation transport for industrial and environmental protection applications, to enable the analysis of complex physical processes in a fast, reliable, and efficient way. In the first part we deal with speed-up of numerical simulation of neutron transport for nuclear reactor core analysis. The convergence properties of the source iteration scheme of the Method of Characteristics applied to be heterogeneous structured geometries has been enhanced by means of Boundary Projection Acceleration, enabling the study of 2D and 3D geometries with transport theory without spatial homogenization. The computational performances have been verified with the C5G7 2D and 3D benchmarks, showing a sensible reduction of iterations and CPU time. The second part is devoted to the study of temperature-dependent elastic scattering of neutrons for heavy isotopes near to the thermal zone. A numerical computation of the Doppler convolution of the elastic scattering kernel based on the gas model is presented, for a general energy dependent cross section and scattering law in the center of mass system. The range of integration has been optimized employing a numerical cutoff, allowing a faster numerical evaluation of the convolution integral. Legendre moments of the transfer kernel are subsequently obtained by direct quadrature and a numerical analysis of the convergence is presented. In the third part we focus our attention to remote sensing applications of radiative transfer employed to investigate the Earth's cryosphere. The photon transport equation is applied to simulate reflectivity of glaciers varying the age of the layer of snow or ice, its thickness, the presence or not other underlying layers, the degree of dust included in the snow, creating a framework able to decipher spectral signals collected by orbiting detectors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Turbulent energy dissipation is presented in the theoretical context of the famous Kolmogorov theory, formulated in 1941. Some remarks and comments about this theory help the reader understand the approach to turbulence study, as well as give some basic insights to the problem. A clear distinction is made amongst dissipation, pseudo-dissipation and dissipation surrogates. Dissipation regulates how turbulent kinetic energy in a flow gets transformed into internal energy, which makes this quantity a fundamental characteristic to investigate in order to enhance our understanding of turbulence. The dissertation focuses on experimental investigation of the pseudo-dissipation. Indeed this quantity is difficult to measure as it requires the knowledge of all the possible derivatives of the three dimensional velocity field. Once considering an hot-wire technique to measure dissipation we need to deal with surrogates of dissipation, since not all the terms can be measured. The analysis of surrogates is the main topic of this work. In particular two flows, the turbulent channel and the turbulent jet, are considered. These canonic flows, introduced in a brief fashion, are often used as a benchmark for CFD solvers and experimental equipment due to their simple structure. Observations made in the canonic flows are often transferable to more complicated and interesting cases, with many industrial applications. The main tools of investigation are DNS simulations and experimental measures. DNS data are used as a benchmark for the experimental results since all the components of dissipation are known within the numerical simulation. The results of some DNS were already available at the start of this thesis, so the main work consisted in reading and processing the data. Experiments were carried out by means of hot-wire anemometry, described in detail on a theoretical and practical level. The study of DNS data of a turbulent channel at Re=298 reveals that the traditional surrogate can be improved Consequently two new surrogates are proposed and analysed, based on terms of the velocity gradient that are easy to measure experimentally. We manage to find a formulation that improves the accuracy of surrogates by an order of magnitude. For the jet flow results from a DNS at Re=1600 of a temporal jet, and results from our experimental facility CAT at Re=70000, are compared to validate the experiment. It is found that the ratio between components of the dissipation differs between DNS and experimental data. Possible errors in both sets of data are discussed, and some ways to improve the data are proposed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sub-grid scale (SGS) models are required in order to model the influence of the unresolved small scales on the resolved scales in large-eddy simulations (LES), the flow at the smallest scales of turbulence. In the following work two SGS models are presented and deeply analyzed in terms of accuracy through several LESs with different spatial resolutions, i.e. grid spacings. The first part of this thesis focuses on the basic theory of turbulence, the governing equations of fluid dynamics and their adaptation to LES. Furthermore, two important SGS models are presented: one is the Dynamic eddy-viscosity model (DEVM), developed by \cite{germano1991dynamic}, while the other is the Explicit Algebraic SGS model (EASSM), by \cite{marstorp2009explicit}. In addition, some details about the implementation of the EASSM in a Pseudo-Spectral Navier-Stokes code \cite{chevalier2007simson} are presented. The performance of the two aforementioned models will be investigated in the following chapters, by means of LES of a channel flow, with friction Reynolds numbers $Re_\tau=590$ up to $Re_\tau=5200$, with relatively coarse resolutions. Data from each simulation will be compared to baseline DNS data. Results have shown that, in contrast to the DEVM, the EASSM has promising potentials for flow predictions at high friction Reynolds numbers: the higher the friction Reynolds number is the better the EASSM will behave and the worse the performances of the DEVM will be. The better performance of the EASSM is contributed to the ability to capture flow anisotropy at the small scales through a correct formulation for the SGS stresses. Moreover, a considerable reduction in the required computational resources can be achieved using the EASSM compared to DEVM. Therefore, the EASSM combines accuracy and computational efficiency, implying that it has a clear potential for industrial CFD usage.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work the problem of performing a numerical simulation of quasi-static crack propagation within an adhesive layer of a bonded joint under Mode I loading affected by stress field changes due to thermal-chemical shrinkage induced by cure process is addressed. Secondly, a parametric study on fracture critical energy, cohesive strength and Young's modulus is performed. Finally, a particular case of adhesive layer stiffening is simulated in order to verify qualitatively the major effect.