958 resultados para NONLINEAR SCIENCE
Resumo:
In this paper the problem of stabilization of systems by means of stable compensations is considered, and results are derived for systems using observer�controller structures, for systems using a cascade structure, and for nonlinear systems
Resumo:
Self-tuning is applied to the control of nonlinear systems represented by the Hammerstein model wherein the nonlinearity is any odd-order polynomial. But control costing is not feasible in general. Initial relay control is employed to contain the deviations.
Resumo:
We investigate the Einstein relation for the diffusivity-mobility ratio (DMR) for n-i-p-i and the microstructures of nonlinear optical compounds on the basis of a newly formulated electron dispersion law. The corresponding results for III-V, ternary and quaternary materials form a special case of our generalized analysis. The respective DMRs for II-VI, IV-VI and stressed materials have been studied. It has been found that taking CdGeAs2, Cd3As2, InAs, InSb, Hg1−xCdxTe, In1−xGaxAsyP1−y lattices matched to InP, CdS, PbTe, PbSnTe and Pb1−xSnxSe and stressed InSb as examples that the DMR increases with increasing electron concentration in various manners with different numerical magnitudes which reflect the different signatures of the n-i-p-i systems and the corresponding microstructures. We have suggested an experimental method of determining the DMR in this case and the present simplified analysis is in agreement with the suggested relationship. In addition, our results find three applications in the field of quantum effect devices.
Resumo:
The paradigm of computational vision hypothesizes that any visual function -- such as the recognition of your grandparent -- can be replicated by computational processing of the visual input. What are these computations that the brain performs? What should or could they be? Working on the latter question, this dissertation takes the statistical approach, where the suitable computations are attempted to be learned from the natural visual data itself. In particular, we empirically study the computational processing that emerges from the statistical properties of the visual world and the constraints and objectives specified for the learning process. This thesis consists of an introduction and 7 peer-reviewed publications, where the purpose of the introduction is to illustrate the area of study to a reader who is not familiar with computational vision research. In the scope of the introduction, we will briefly overview the primary challenges to visual processing, as well as recall some of the current opinions on visual processing in the early visual systems of animals. Next, we describe the methodology we have used in our research, and discuss the presented results. We have included some additional remarks, speculations and conclusions to this discussion that were not featured in the original publications. We present the following results in the publications of this thesis. First, we empirically demonstrate that luminance and contrast are strongly dependent in natural images, contradicting previous theories suggesting that luminance and contrast were processed separately in natural systems due to their independence in the visual data. Second, we show that simple cell -like receptive fields of the primary visual cortex can be learned in the nonlinear contrast domain by maximization of independence. Further, we provide first-time reports of the emergence of conjunctive (corner-detecting) and subtractive (opponent orientation) processing due to nonlinear projection pursuit with simple objective functions related to sparseness and response energy optimization. Then, we show that attempting to extract independent components of nonlinear histogram statistics of a biologically plausible representation leads to projection directions that appear to differentiate between visual contexts. Such processing might be applicable for priming, \ie the selection and tuning of later visual processing. We continue by showing that a different kind of thresholded low-frequency priming can be learned and used to make object detection faster with little loss in accuracy. Finally, we show that in a computational object detection setting, nonlinearly gain-controlled visual features of medium complexity can be acquired sequentially as images are encountered and discarded. We present two online algorithms to perform this feature selection, and propose the idea that for artificial systems, some processing mechanisms could be selectable from the environment without optimizing the mechanisms themselves. In summary, this thesis explores learning visual processing on several levels. The learning can be understood as interplay of input data, model structures, learning objectives, and estimation algorithms. The presented work adds to the growing body of evidence showing that statistical methods can be used to acquire intuitively meaningful visual processing mechanisms. The work also presents some predictions and ideas regarding biological visual processing.
Resumo:
The nonlinear mode coupling between two co-directional quasi-harmonic Rayleigh surface waves on an isotropic solid is analysed using the method of multiple scales. This procedure yields a system of six semi-linear hyperbolic partial differential equations with the same principal part governing the slow variations in the (complex) amplitudes of the two fundamental, the two second harmonic and the two combination frequency waves at the second stage of the perturbation expansion. A numerical solution of these equations for excitation by monochromatic signals at two arbitrary frequencies, indicates that there is a continuous transfer of energy back and forth among the fundamental, second harmonic and combination frequency waves due to mode coupling. The mode coupling tends to be more pronounced as the frequencies of the interacting waves approach each other.
Resumo:
A systematic derivation of the approximate coupled amplitude equations governing the propagation of a quasi-monochromatic Rayleigh surface wave on an isotropic solid is presented, starting from the non-linear governing differential equations and the non-linear free-surface boundary conditions, using the method of mulitple scales. An explicit solution of these equations for a signalling problem is obtained in terms of hyperbolic functions. In the case of monochromatic excitation, it is shown that the second harmonic amplitude grows initially at the expense of the fundamental and that the amplitudes of the fundamental and second harmonic remain bounded for all time.
Resumo:
A class of feedback systems, consisting of dynamical non-linear subsystems which arise in many diverse control applications, is analyzed for L2-stability. It is shown that, although a transformation of these systems to the familiar Lur'e configuration does not seem to be possible, a one-to-one correspondence may be effected between the stability properties of these and the Lur'e systems. Interesting stability criteria are developed by exploiting this characteristic.
Resumo:
Particle filters find important applications in the problems of state and parameter estimations of dynamical systems of engineering interest. Since a typical filtering algorithm involves Monte Carlo simulations of the process equations, sample variance of the estimator is inversely proportional to the number of particles. The sample variance may be reduced if one uses a Rao-Blackwell marginalization of states and performs analytical computations as much as possible. In this work, we propose a semi-analytical particle filter, requiring no Rao-Blackwell marginalization, for state and parameter estimations of nonlinear dynamical systems with additively Gaussian process/observation noises. Through local linearizations of the nonlinear drift fields in the process/observation equations via explicit Ito-Taylor expansions, the given nonlinear system is transformed into an ensemble of locally linearized systems. Using the most recent observation, conditionally Gaussian posterior density functions of the linearized systems are analytically obtained through the Kalman filter. This information is further exploited within the particle filter algorithm for obtaining samples from the optimal posterior density of the states. The potential of the method in state/parameter estimations is demonstrated through numerical illustrations for a few nonlinear oscillators. The proposed filter is found to yield estimates with reduced sample variance and improved accuracy vis-a-vis results from a form of sequential importance sampling filter.
Resumo:
The problem of unsupervised anomaly detection arises in a wide variety of practical applications. While one-class support vector machines have demonstrated their effectiveness as an anomaly detection technique, their ability to model large datasets is limited due to their memory and time complexity for training. To address this issue for supervised learning of kernel machines, there has been growing interest in random projection methods as an alternative to the computationally expensive problems of kernel matrix construction and sup-port vector optimisation. In this paper we leverage the theory of nonlinear random projections and propose the Randomised One-class SVM (R1SVM), which is an efficient and scalable anomaly detection technique that can be trained on large-scale datasets. Our empirical analysis on several real-life and synthetic datasets shows that our randomised 1SVM algorithm achieves comparable or better accuracy to deep auto encoder and traditional kernelised approaches for anomaly detection, while being approximately 100 times faster in training and testing.
Resumo:
The problem of identifying parameters of nonlinear vibrating systems using spatially incomplete, noisy, time-domain measurements is considered. The problem is formulated within the framework of dynamic state estimation formalisms that employ particle filters. The parameters of the system, which are to be identified, are treated as a set of random variables with finite number of discrete states. The study develops a procedure that combines a bank of self-learning particle filters with a global iteration strategy to estimate the probability distribution of the system parameters to be identified. Individual particle filters are based on the sequential importance sampling filter algorithm that is readily available in the existing literature. The paper develops the requisite recursive formulary for evaluating the evolution of weights associated with system parameter states. The correctness of the formulations developed is demonstrated first by applying the proposed procedure to a few linear vibrating systems for which an alternative solution using adaptive Kalman filter method is possible. Subsequently, illustrative examples on three nonlinear vibrating systems, using synthetic vibration data, are presented to reveal the correct functioning of the method. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The significance of treating rainfall as a chaotic system instead of a stochastic system for a better understanding of the underlying dynamics has been taken up by various studies recently. However, an important limitation of all these approaches is the dependence on a single method for identifying the chaotic nature and the parameters involved. Many of these approaches aim at only analyzing the chaotic nature and not its prediction. In the present study, an attempt is made to identify chaos using various techniques and prediction is also done by generating ensembles in order to quantify the uncertainty involved. Daily rainfall data of three regions with contrasting characteristics (mainly in the spatial area covered), Malaprabha, Mahanadi and All-India for the period 1955-2000 are used for the study. Auto-correlation and mutual information methods are used to determine the delay time for the phase space reconstruction. Optimum embedding dimension is determined using correlation dimension, false nearest neighbour algorithm and also nonlinear prediction methods. The low embedding dimensions obtained from these methods indicate the existence of low dimensional chaos in the three rainfall series. Correlation dimension method is done on th phase randomized and first derivative of the data series to check whether the saturation of the dimension is due to the inherent linear correlation structure or due to low dimensional dynamics. Positive Lyapunov exponents obtained prove the exponential divergence of the trajectories and hence the unpredictability. Surrogate data test is also done to further confirm the nonlinear structure of the rainfall series. A range of plausible parameters is used for generating an ensemble of predictions of rainfall for each year separately for the period 1996-2000 using the data till the preceding year. For analyzing the sensitiveness to initial conditions, predictions are done from two different months in a year viz., from the beginning of January and June. The reasonably good predictions obtained indicate the efficiency of the nonlinear prediction method for predicting the rainfall series. Also, the rank probability skill score and the rank histograms show that the ensembles generated are reliable with a good spread and skill. A comparison of results of the three regions indicates that although they are chaotic in nature, the spatial averaging over a large area can increase the dimension and improve the predictability, thus destroying the chaotic nature. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A general asymptotic method based on the work of Krylov-Bogoliubov is developed to obtain the response of nonlinear over damped systems. A second-order system with both roots real is treated first and the method is then extended to higher-order systems. Two illustrative examples show good agreement with results obtained by numerical integration.
Resumo:
Some new concepts characterizing the response of nonlinear systems are developed. These new concepts are denoted by the terms, the transient system equivalent, the response vector, and the space-phase components. This third concept is analyzed in comparison with the well-known technique of symmetrical components. The performance of a multiplicative feedback control system is represented by a nonlinear integro-differential equation; its solution is obtained by the principle of variation of parameters. The system response is treated as a vector and is resolved into its space-phase components. The individual effects of these components on the performance of the system are discussed. The suitability of the technique for the transient analysis of higher order nonlinear control systems is discussed.