992 resultados para NONLINEAR DYNAMICS
Resumo:
გამოკვლეულია ძლიერად ლოკალიზებული გრიგალური სტრუქტურების გენერაციისა და არაწრფივი დინამიკის თავისებურებანი მაგნიტოაქტიურ ნაწილობრივ-იონიზებულ არაერთგვაროვან დისიპაციურ პლაზმაში. მიღებულია გრძელ-ტალღოვანი დრეიფული ტალღური სტრუქტურების გადატანის არაწრფივი განტოლება. განმხოლოებული გრიგალური სტრუქტურების ერთმანეთთან და გარემოსთან ურთიერთქმედების დადგენილი სურათი აჩვენებს, რომ არაერთგვაროვან პლაზმურ გარემოში გრიგალურ სტრუქტურებს შეუძლიათ განაპირობონ ძლიერი დრეიფული ტურბულენტობის, ნივთიერებისა და სითბოს ანომალური გადატანის ფორმირება.
Resumo:
Studies evaluating the mechanical behavior of the trabecular microstructure play an important role in our understanding of pathologies such as osteoporosis, and in increasing our understanding of bone fracture and bone adaptation. Understanding of such behavior in bone is important for predicting and providing early treatment of fractures. The objective of this study is to present a numerical model for studying the initiation and accumulation of trabecular bone microdamage in both the pre- and post-yield regions. A sub-region of human vertebral trabecular bone was analyzed using a uniformly loaded anatomically accurate microstructural three-dimensional finite element model. The evolution of trabecular bone microdamage was governed using a non-linear, modulus reduction, perfect damage approach derived from a generalized plasticity stress-strain law. The model introduced in this paper establishes a history of microdamage evolution in both the pre- and post-yield regions
Resumo:
In the Morris water maze (MWM) task, proprioceptive information is likely to have a poor accuracy due to movement inertia. Hence, in this condition, dynamic visual information providing information on linear and angular acceleration would play a critical role in spatial navigation. To investigate this assumption we compared rat's spatial performance in the MWM and in the homing hole board (HB) tasks using a 1.5 Hz stroboscopic illumination. In the MWM, rats trained in the stroboscopic condition needed more time than those trained in a continuous light condition to reach the hidden platform. They expressed also little accuracy during the probe trial. In the HB task, in contrast, place learning remained unaffected by the stroboscopic light condition. The deficit in the MWM was thus complete, affecting both escape latency and discrimination of the reinforced area, and was thus task specific. This dissociation confirms that dynamic visual information is crucial to spatial navigation in the MWM whereas spatial navigation on solid ground is mediated by a multisensory integration, and thus less dependent on visual information.
Resumo:
BACKGROUND: The ambition of most molecular biologists is the understanding of the intricate network of molecular interactions that control biological systems. As scientists uncover the components and the connectivity of these networks, it becomes possible to study their dynamical behavior as a whole and discover what is the specific role of each of their components. Since the behavior of a network is by no means intuitive, it becomes necessary to use computational models to understand its behavior and to be able to make predictions about it. Unfortunately, most current computational models describe small networks due to the scarcity of kinetic data available. To overcome this problem, we previously published a methodology to convert a signaling network into a dynamical system, even in the total absence of kinetic information. In this paper we present a software implementation of such methodology. RESULTS: We developed SQUAD, a software for the dynamic simulation of signaling networks using the standardized qualitative dynamical systems approach. SQUAD converts the network into a discrete dynamical system, and it uses a binary decision diagram algorithm to identify all the steady states of the system. Then, the software creates a continuous dynamical system and localizes its steady states which are located near the steady states of the discrete system. The software permits to make simulations on the continuous system, allowing for the modification of several parameters. Importantly, SQUAD includes a framework for perturbing networks in a manner similar to what is performed in experimental laboratory protocols, for example by activating receptors or knocking out molecular components. Using this software we have been able to successfully reproduce the behavior of the regulatory network implicated in T-helper cell differentiation. CONCLUSION: The simulation of regulatory networks aims at predicting the behavior of a whole system when subject to stimuli, such as drugs, or determine the role of specific components within the network. The predictions can then be used to interpret and/or drive laboratory experiments. SQUAD provides a user-friendly graphical interface, accessible to both computational and experimental biologists for the fast qualitative simulation of large regulatory networks for which kinetic data is not necessarily available.
Resumo:
BACKGROUND In previous meta-analyses, tea consumption has been associated with lower incidence of type 2 diabetes. It is unclear, however, if tea is associated inversely over the entire range of intake. Therefore, we investigated the association between tea consumption and incidence of type 2 diabetes in a European population. METHODOLOGY/PRINCIPAL FINDINGS The EPIC-InterAct case-cohort study was conducted in 26 centers in 8 European countries and consists of a total of 12,403 incident type 2 diabetes cases and a stratified subcohort of 16,835 individuals from a total cohort of 340,234 participants with 3.99 million person-years of follow-up. Country-specific Hazard Ratios (HR) for incidence of type 2 diabetes were obtained after adjustment for lifestyle and dietary factors using a Cox regression adapted for a case-cohort design. Subsequently, country-specific HR were combined using a random effects meta-analysis. Tea consumption was studied as categorical variable (0, >0-<1, 1-<4, ≥ 4 cups/day). The dose-response of the association was further explored by restricted cubic spline regression. Country specific medians of tea consumption ranged from 0 cups/day in Spain to 4 cups/day in United Kingdom. Tea consumption was associated inversely with incidence of type 2 diabetes; the HR was 0.84 [95%CI 0.71, 1.00] when participants who drank ≥ 4 cups of tea per day were compared with non-drinkers (p(linear trend) = 0.04). Incidence of type 2 diabetes already tended to be lower with tea consumption of 1-<4 cups/day (HR = 0.93 [95%CI 0.81, 1.05]). Spline regression did not suggest a non-linear association (p(non-linearity) = 0.20). CONCLUSIONS/SIGNIFICANCE A linear inverse association was observed between tea consumption and incidence of type 2 diabetes. People who drink at least 4 cups of tea per day may have a 16% lower risk of developing type 2 diabetes than non-tea drinkers.
Resumo:
We propose a novel compressed sensing technique to accelerate the magnetic resonance imaging (MRI) acquisition process. The method, coined spread spectrum MRI or simply s(2)MRI, consists of premodulating the signal of interest by a linear chirp before random k-space under-sampling, and then reconstructing the signal with nonlinear algorithms that promote sparsity. The effectiveness of the procedure is theoretically underpinned by the optimization of the coherence between the sparsity and sensing bases. The proposed technique is thoroughly studied by means of numerical simulations, as well as phantom and in vivo experiments on a 7T scanner. Our results suggest that s(2)MRI performs better than state-of-the-art variable density k-space under-sampling approaches.
Resumo:
Modeling concentration-response function became extremely popular in ecotoxicology during the last decade. Indeed, modeling allows determining the total response pattern of a given substance. However, reliable modeling is consuming in term of data, which is in contradiction with the current trend in ecotoxicology, which aims to reduce, for cost and ethical reasons, the number of data produced during an experiment. It is therefore crucial to determine experimental design in a cost-effective manner. In this paper, we propose to use the theory of locally D-optimal designs to determine the set of concentrations to be tested so that the parameters of the concentration-response function can be estimated with high precision. We illustrated this approach by determining the locally D-optimal designs to estimate the toxicity of the herbicide dinoseb on daphnids and algae. The results show that the number of concentrations to be tested is often equal to the number of parameters and often related to the their meaning, i.e. they are located close to the parameters. Furthermore, the results show that the locally D-optimal design often has the minimal number of support points and is not much sensitive to small changes in nominal values of the parameters. In order to reduce the experimental cost and the use of test organisms, especially in case of long-term studies, reliable nominal values may therefore be fixed based on prior knowledge and literature research instead of on preliminary experiments
Resumo:
We present a study of binary mixtures of Bose-Einstein condensates confined in a double-well potential within the framework of the mean field Gross-Pitaevskii (GP) equation. We re-examine both the single component and the binary mixture cases for such a potential, and we investigate what are the situations in which a simpler two-mode approach leads to an accurate description of their dynamics. We also estimate the validity of the most usual dimensionality reductions used to solve the GP equations. To this end, we compare both the semi-analytical two-mode approaches and the numerical simulations of the one-dimensional (1D) reductions with the full 3D numerical solutions of the GP equation. Our analysis provides a guide to clarify the validity of several simplified models that describe mean-field nonlinear dynamics, using an experimentally feasible binary mixture of an F = 1 spinor condensate with two of its Zeeman manifolds populated, m = ±1.
Resumo:
We present a study of binary mixtures of Bose-Einstein condensates confined in a double-well potential within the framework of the mean field Gross-Pitaevskii (GP) equation. We re-examine both the single component and the binary mixture cases for such a potential, and we investigate what are the situations in which a simpler two-mode approach leads to an accurate description of their dynamics. We also estimate the validity of the most usual dimensionality reductions used to solve the GP equations. To this end, we compare both the semi-analytical two-mode approaches and the numerical simulations of the one-dimensional (1D) reductions with the full 3D numerical solutions of the GP equation. Our analysis provides a guide to clarify the validity of several simplified models that describe mean-field nonlinear dynamics, using an experimentally feasible binary mixture of an F = 1 spinor condensate with two of its Zeeman manifolds populated, m = ±1.
Resumo:
Children who sustain a prenatal or perinatal brain injury in the form of a stroke develop remarkably normal cognitive functions in certain areas, with a particular strength in language skills. A dominant explanation for this is that brain regions from the contralesional hemisphere "take over" their functions, whereas the damaged areas and other ipsilesional regions play much less of a role. However, it is difficult to tease apart whether changes in neural activity after early brain injury are due to damage caused by the lesion or by processes related to postinjury reorganization. We sought to differentiate between these two causes by investigating the functional connectivity (FC) of brain areas during the resting state in human children with early brain injury using a computational model. We simulated a large-scale network consisting of realistic models of local brain areas coupled through anatomical connectivity information of healthy and injured participants. We then compared the resulting simulated FC values of healthy and injured participants with the empirical ones. We found that the empirical connectivity values, especially of the damaged areas, correlated better with simulated values of a healthy brain than those of an injured brain. This result indicates that the structural damage caused by an early brain injury is unlikely to have an adverse and sustained impact on the functional connections, albeit during the resting state, of damaged areas. Therefore, these areas could continue to play a role in the development of near-normal function in certain domains such as language in these children.
Resumo:
Stratospheric ozone can be measured accurately using a limb scatter remote sensing technique at the UV-visible spectral region of solar light. The advantages of this technique includes a good vertical resolution and a good daytime coverage of the measurements. In addition to ozone, UV-visible limb scatter measurements contain information about NO2, NO3, OClO, BrO and aerosols. There are currently several satellite instruments continuously scanning the atmosphere and measuring the UVvisible region of the spectrum, e.g., the Optical Spectrograph and Infrared Imager System (OSIRIS) launched on the Odin satellite in February 2001, and the Scanning Imaging Absorption SpectroMeter for Atmospheric CartograpHY (SCIAMACHY) launched on Envisat in March 2002. Envisat also carries the Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument, which also measures limb-scattered sunlight under bright limb occultation conditions. These conditions occur during daytime occultation measurements. The global coverage of the satellite measurements is far better than any other ozone measurement technique, but still the measurements are sparse in the spatial domain. Measurements are also repeated relatively rarely over a certain area, and the composition of the Earth’s atmosphere changes dynamically. Assimilation methods are therefore needed in order to combine the information of the measurements with the atmospheric model. In recent years, the focus of assimilation algorithm research has turned towards filtering methods. The traditional Extended Kalman filter (EKF) method takes into account not only the uncertainty of the measurements, but also the uncertainty of the evolution model of the system. However, the computational cost of full blown EKF increases rapidly as the number of the model parameters increases. Therefore the EKF method cannot be applied directly to the stratospheric ozone assimilation problem. The work in this thesis is devoted to the development of inversion methods for satellite instruments and the development of assimilation methods used with atmospheric models.
Resumo:
The nonlinear analysis of a general mixed second order reaction was performed, aiming to explore some basic tools concerning the mathematics of nonlinear differential equations. Concepts of stability around fixed points based on linear stability analysis are introduced, together with phase plane and integral curves. The main focus is the chemical relationship between changes of limiting reagent and transcritical bifurcation, and the investigation underlying the conclusion.
Resumo:
Memristive computing refers to the utilization of the memristor, the fourth fundamental passive circuit element, in computational tasks. The existence of the memristor was theoretically predicted in 1971 by Leon O. Chua, but experimentally validated only in 2008 by HP Labs. A memristor is essentially a nonvolatile nanoscale programmable resistor — indeed, memory resistor — whose resistance, or memristance to be precise, is changed by applying a voltage across, or current through, the device. Memristive computing is a new area of research, and many of its fundamental questions still remain open. For example, it is yet unclear which applications would benefit the most from the inherent nonlinear dynamics of memristors. In any case, these dynamics should be exploited to allow memristors to perform computation in a natural way instead of attempting to emulate existing technologies such as CMOS logic. Examples of such methods of computation presented in this thesis are memristive stateful logic operations, memristive multiplication based on the translinear principle, and the exploitation of nonlinear dynamics to construct chaotic memristive circuits. This thesis considers memristive computing at various levels of abstraction. The first part of the thesis analyses the physical properties and the current-voltage behaviour of a single device. The middle part presents memristor programming methods, and describes microcircuits for logic and analog operations. The final chapters discuss memristive computing in largescale applications. In particular, cellular neural networks, and associative memory architectures are proposed as applications that significantly benefit from memristive implementation. The work presents several new results on memristor modeling and programming, memristive logic, analog arithmetic operations on memristors, and applications of memristors. The main conclusion of this thesis is that memristive computing will be advantageous in large-scale, highly parallel mixed-mode processing architectures. This can be justified by the following two arguments. First, since processing can be performed directly within memristive memory architectures, the required circuitry, processing time, and possibly also power consumption can be reduced compared to a conventional CMOS implementation. Second, intrachip communication can be naturally implemented by a memristive crossbar structure.