908 resultados para NMDA-receptor antagonist
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
It is widely acknowledged that the indoleamine neurotransmitter serotonin (5-HT) plays a dual role in the regulation of anxiety, a role that in part depends upon neuroanatomical locus of action. Thus, whereas stimulation of 5-HT1A or 5-HT2 receptors in the limbic forebrain (amygdala, hippocampus) enhances anxiety-like responding in rodents, activation of corresponding receptor populations in the midbrain periaqueductal grey (PAG) more often than not reduce anxiety-like behaviour. The present study specifically concerns the anxiety-modulating influence of 5-HT2 receptors within the mouse PAG. Experiment 1 assessed the effects of intra-PAG infusions of the 5-HT2B/2C receptor agonist mCPP (0, 0.03, 0.1 or 0.3 nmol/0.1 mu l) on the behaviour of mice exposed to the elevated plus-maze. As mCPP acts preferentially at 5-HT2B and 5-HT2C receptors, Experiment 2 investigated its effects in animals pretreated with ketanserin, a preferential 5-HT2A/2C receptor antagonist. In both cases, test sessions were videotaped and subsequently, scored for anxiety-like behaviour (e.g., percentage of open arm entries and percentage of open arm time) as well as general locomotor activity (closed arm entries). The results of Experiment I showed that mCPP microinfusions (0.03 and 0.1 nmol) into the PAG of mice decreased behavioural indices of anxiety without significantly altering general activity measures. In Experiment 2, the anxiolytic-like profile of intra-PAG mCPP (0.03 nmol) was substantially attenuated by intra-PAG pretreatment with an intrinsically inactive dose of the preferential 5-HT2A/2C receptor antagonist, ketanserin (10 nmol/0.1 mu l). Together, these data suggest that 5HT(2C) receptor populations within the midbrain PAG play an inhibitory role in plus-maze anxiety in mice. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study investigated the role of H1 and H2 receptors in anxiety and the retrieval of emotional memory using a Trial 1/Trial 2 (T1/T2) protocol in an elevated plus-maze (EPM). Tests were performed on 2 consecutive days, designated T1 and T2. Before T1, the mice received intraperitoneal injections of saline (SAL), 20 mg/kg zolantidine (ZOL, an H2 receptor antagonist), or 8.0 or 16 mg/kg chlorpheniramine (CPA, an H1 receptor antagonist). After 40 min, they were subjected to the EPM test. In T2 (24 h later), each group was subdivided into two additional groups, and the animals from each group were re-injected with SAL or one of the drugs. In T1, the Student t-test showed no difference between the SAL and ZOL or 8 mg/kg CPA groups with respect to the percentages of open arm entries (%OAE) and open arm time (%OAT). However, administration of CPA at the highest dose of 16 mg/kg decreased %OAE and %OAT, but not locomotor activity, indicating anxiogenic-like behavior. Emotional memory, as revealed by a reduction in open arm exploration between the two trials, was observed in all experimental groups, indicating that ZOL and 8 mg/kg CPA did not affect emotional memory, whereas CPA at the highest dose affected acquisition and consolidation, but not retrieval of memory. Taken together, these results suggest that H1 receptor, but not H2, is implicated in anxiety-like behavior and in emotional memory acquisition and consolidation deficits in mice subjected to EPM testing.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this study we investigated the influence of d(CH2)(5)-Tyr(Me)-[Arg(8)]vasopressin (AAVP) and [adamanteanacetyl(1),0-ET-DTyr(2), Val(4), aminobutyryl(6), Arg(8,9)]-[Arg(8)]vasopressin (ATAVP), which are antagonists of vasopressin V-1 and V-2 receptors, and the effects of losartan, a selective angiotensin AT(1) receptor antagonist, and CGP42112A, a selective AT(2) receptor antagonist, injected into the lateral septal area (LSA) on thirst and hypertension induced by [Arg(8)]vasopressin (AVP). AAVP and ATAVP injected into the LSA reduced the drinking responses elicited by injecting AVP into the LSA. Both the AT(1) and AT(2) ligands administered into the LSA elicited a concentration-dependent decrease in the water intake induced by AVP injected into the LSA, but losartan was more effective than CGP42112A. The increase in MAP, due to injection of AVP into the LSA, was reduced by prior injection of AAVP from 18 +/- 1 to 6 +/- 1 mm Hg. Losartan injected into the LSA prior to AVP reduced the increase in MAP to 7 +/- 0.8 mm Hg. ATAVP and CGP42112A produced no changes in the pressor effect of AVP. These results suggest that the dipsogenic effects induced by injecting AVP into the LSA were mediated primarily by AT(1) receptors. However, doses of losartan were more effective when combined with CGP42112A than when given alone, suggesting that the thirst induced by AVP injections into LSA may involve activation of multiple AVP and angiotensin II receptor subtypes. The pressor response of AVP was reduced by losartan and by AAVP. CGP42112A and ATAVP did not change the AVP pressor response. These results suggest that facilitator effects of AVP on water intake are mediated through the activation of V-1 receptors and that the inhibitory effect requires V-2 receptors. The involvement of AT(1) and AT(2) receptors can be postulated. Based on the present findings, we suggest that the AVP in the LSA may play a role in the control of water and arterial blood pressure balance. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We determined the effects of losartan and CGP42112A (selective ligands of the AT1 and AT2 angiotensin receptors, respectively) and salarasin (a relatively nonselective angiotensin receptor antagonist) on urinary volume and urinary sodium and potassium excretion induced by administration of angiotensin II (ANG II) into the paraventricular nucleus (PVN) of conscious rats. Both the AT1 and AT2 ligands and salarasin administered in the presence of ANG II elicited a concentration-dependent inhibition of urine excretion, but losartan inhibited only 75% of this response. The IC50 for salarasin, CGP42112A, and losartan was 0.01, 0.05, and 6 nM, respectively. Previous treatment with saralasin, CGP42112A and losartan competitively antagonized the natriuretic responses to PVN administration of ANG II, and the IC50 values were 0.09, 0.48, and 10 nM, respectively. The maximum response to losartan was 65% of that obtained with saralasin. Pretreatment with saralasin, losartan, and CGP42112A injected into the PVN caused shifts to the right of the concentration-response curves, but the losartan concentrations were disproportionately greater compared with salarasin or CGP42112A. The IC50 values were 0.06, 0.5, and 7.0 for salarasin, CGP42112A, and losartan, respectively. These results suggest that both AT1 and AT2 receptor subtypes in the PVN are involved in ANG II-related urine, sodium, and potassium excretion, and that the inhibitory responses to AT2 blockade are predominant. Copyright (C) 1999 Elsevier Science B.V.
Resumo:
The NMDA receptor (NMDAR) channel has been proposed to function as a coincidence-detection mechanism for afferent and reentrant signals, supporting conscious perception, learning, and memory formation. In this paper we discuss the genesis of distorted perceptual states induced by subanesthetic doses of ketamine, a well-known NMDA antagonist. NMDAR blockage has been suggested to perturb perceptual processing in sensory cortex, and also to decrease GABAergic inhibition in limbic areas (leading to an increase in dopamine excitability). We propose that perceptual distortions and hallucinations induced by ketamine blocking of NMDARs are generated by alternative signaling pathways, which include increase of excitability in frontal areas, and glutamate binding to AMPA in sensory cortex prompting Ca++ entry through voltage-dependent calcium channels (VDCCs). This mechanism supports the thesis that glutamate binding to AMPA and NMDARs at sensory cortex mediates most normal perception, while binding to AMPA and activating VDCCs mediates some types of altered perceptual states. We suggest that Ca++ metabolic activity in neurons at associative and sensory cortices is an important factor in the generation of both kinds of perceptual consciousness.
Resumo:
Background: Cardiovascular disease is the leading cause of death in Brazil, and hypertension is its major risk factor. The benefit of its drug treatment to prevent major cardiovascular events was consistently demonstrated. Angiotensin-receptor blockers (ARB) have been the preferential drugs in the management of hypertension worldwide, despite the absence of any consistent evidence of advantage over older agents, and the concern that they may be associated with lower renal protection and risk for cancer. Diuretics are as efficacious as other agents, are well tolerated, have longer duration of action and low cost, but have been scarcely compared with ARBs. A study comparing diuretic and ARB is therefore warranted.Methods/design: This is a randomized, double-blind, clinical trial, comparing the association of chlorthalidone and amiloride with losartan as first drug option in patients aged 30 to 70 years, with stage I hypertension. The primary outcomes will be variation of blood pressure by time, adverse events and development or worsening of microalbuminuria and of left ventricular hypertrophy in the EKG. The secondary outcomes will be fatal or non-fatal cardiovascular events: myocardial infarction, stroke, heart failure, evidence of new subclinical atherosclerosis and sudden death. The study will last 18 months. The sample size will be of 1200 participants for group in order to confer enough power to test for all primary outcomes. The project was approved by the Ethics committee of each participating institution.Discussion: The putative pleiotropic effects of ARB agents, particularly renal protection, have been disputed, and they have been scarcely compared with diuretics in large clinical trials, despite that they have been at least as efficacious as newer agents in managing hypertension. Even if the null hypothesis is not rejected, the information will be useful for health care policy to treat hypertension in Brazil. Clinical trials registration number: ClinicalTrials.gov: NCT00971165. © 2011 Fuchs et al; licensee BioMed Central Ltd.
Resumo:
In the present study, the involvement of paraventricular nucleus of the hypothalamus (PVN) glutamate receptors in the modulation of autonomic (arterial blood pressure, heart rate and tail skin temperature) and neuroendocrine (plasma corticosterone) responses and behavioral consequences evoked by the acute restraint stress in rats was investigated. The bilateral microinjection of the selective non-NMDA glutamate receptor antagonist NBQX (2 nmol/ 100 nL) into the PVN reduced the arterial pressure increase as well as the fall in the tail cutaneous temperature induced by the restraint stress, without affecting the stress-induced tachycardiac response. On the other hand, the pretreatment of the PVN with the selective NMDA glutamate receptor antagonist LY235959 (2 nmol/100 nL) was able to increase the stress-evoked pressor and tachycardiac response, without affecting the fall in the cutaneous tail temperature. The treatment of the PVN with LY235959 also reduced the increase in plasma corticosterone levels during stress and inhibited the anxiogenic-like effect observed in the elevated plus-maze 24 h after the restraint session. The present results show that NMDA and non-NMDA receptors in the PVN differently modulate responses associated to stress. The PVN glutamate neurotransmission, via non-NMDA receptors, has a facilitatory influence on stress-evoked autonomic responses. On the other hand, the present data point to an inhibitory role of PVN NMDA receptors on the cardiovascular responses to stress. Moreover, our findings also indicate an involvement of PVN NMDA glutamate receptors in the mediation of the plasma corticosterone response as well as in the delayed emotional consequences induced by the restraint stress. © 2012 Elsevier B.V. and ECNP.
Resumo:
Systemic administration of cannabidiol (CBD) is able to attenuate cardiovascular responses to acute restraint stress through activation of 5-HT1A receptors. Previous results from our group suggest that the bed nucleus of the stria terminalis (BNST) is involved in the antiaversive effects of the CBD. Moreover, it has been proposed that synapses within the BNST influence restraint-evoked cardiovascular changes, in particular by an inhibitory influence on the tachycardiac response associated to restraint stress. Thus, the present work investigated the effects of CBD injected into the BNST on cardiovascular changes induced by acute restraint stress and if these effects would involve the local activation of 5-HT1A receptors. The exposition to restraint stress increased both blood pressure and heart rate (HR). The microinjection of CBD (30 and 60nmol) into the BNST enhanced the restraint-evoked HR increase, in a dose-dependent manner, without affecting the pressor response. The selective 5-HT1A receptor antagonist WAY100635 by itself did not change the cardiovascular responses to restraint stress, but blocked the effects of CBD. These results showed that CBD microinjected into the BNST enhanced the HR increase associated with acute restraint stress without affecting the blood pressure response. Although these results are not in agreement with those observed after systemic administration of CBD, they are similar to effects observed after reversible inactivation of the BNST. Moreover, similar to the effects observed after systemic administration, CBD effects in the BNST seem to depend on activation of 5-HT1A receptors. © 2012 Elsevier B.V. and ECNP.