980 resultados para NICOTINIC ACETYLCHOLINE RECEPTOR


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The expression and function of nicotinic ACh receptors (nAChRs) in rat coronary microvascular endothelial cells (CMECs) were examined using RT-PCR and whole cell patch-clamp recording methods. RT-PCR revealed expression of mRNA encoding for the subunits alpha(2), alpha(3), alpha(4), alpha(5), alpha(7), beta(2), and beta(4) but not beta(3). Focal application of ACh evoked an inward current in isolated CMECs voltage clamped at negative membrane potentials. The current-voltage relationship of the ACh-induced current exhibited marked inward rectification and a reversal potential (E-rev) close to 0 mV. The cholinergic agonists nicotine, epibatidine, and cytisine activated membrane currents similar to those evoked by ACh. The nicotine-induced current was abolished by the neuronal nAChR antagonist mecamylamine. The direction and magnitude of the shift in E-rev of nicotine-induced current as a function of extracellular Na+ concentration indicate that the nAChR channel is cation selective and follows that predicted by the Goldman-Hodgkin-Katz equation assuming K+/Na+ permeability ratio of 1.11. In fura-2-loaded CMECs, application of ACh, but not of nicotine, elicited a transient increase in intracellular free Ca2+ concentration. Taken together, these results demonstrate that neuronal nAChR activation by cholinergic agonists evokes an inward current in CMECs carried primarily by Na+, which may contribute to the plasma nicotine-induced changes in microvascular permeability and reactivity induced by elevations in plasma nicotine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuronaaliset nikotiinireseptorit liittyvät tupakkariippuvuuden lisäksi moniin neurologisiin sairauksiin, kuten Alzheimerin tautiin, skitsofreniaan, masennukseen ja tarkkaavaisuus- ja ylivilkkaushäiriöön. Nikotiinireseptorien stimulaation on tutkimuksissa havaittu parantavan kognitiota. Useat lääkeyritykset tutkivat nikotiinireseptoriagonisteja ja -antagonisteja eri neurologisten sairauksien hoidossa. Ongelmana nikotiinireseptori-agonisteja käytettäessä on reseptorissa tapahtuva desensitisaatio. Tällöin reseptori sulkeutuu, eikä aktivoidu vaikka agonistia olisi tarjolla tai sitoutuneena reseptoriin. Varsinkin alfa7-reseptori desensitoituu hyvin nopeasti agonistialtistuksen seurauksena. Reseptorien desensitoituminen voi kliinisessä käytössä aiheuttaa lääkeaineen tehon menetyksen. Perinteisen agonistin sitoutumiskohdan lisäksi nikotiinireseptorissa sijaitsee myös muita sitoutumiskohtia, joita kutsutaan allosteerisiksi sitoutumispaikoiksi. Tutkimuksissa on havaittu, että eräät allosteerisesti sitoutuvat aineet, kuten PNU-120596, voivat vahvistaa agonistin aikaansaamaa vastetta ja/tai estää reseptorin desensitoitumista. Näitä aineita kutsutaan positiivisiksi allosteerisiksi modulaattoreiksi ja niiden ajatellaan olevan vaihtoehto desensitoitumisen aiheuttamaan tehon menetyksen ongelmaan. Nikotiinireseptorien positiivisten allosteeristen modulaattorien tarkkaa vaikutusta ja sitoutumiskohtaa reseptoriin ei vielä tarkkaan tiedetä. Tutkimuksen aiheena oli karakterisoida positiivisten allosteeristen modulaattoreiden vaikutuksia alfa7-nikotiinireseptoriin. Tutkimuksessa tarkoituksena oli käyttää hyväksi laboratoriossa aiemmin tehtyä havaintoa, jonka mukaan alfa7-nikotiinireseptorin transmembraaniosan aminohappoon tehdyn mutaation L247T seurauksena positiiviset allosteeriset modulaattorit muuttuvat agonisteiksi. Haluttiin selvittää, kuinka agonistin sitoutumiskohtaan kohdennettua mutageneesiä käyttäen tehty mutaatio W149M tai W149F vaikuttavat PNU-120596:n kykyyn toimia agonistina alfa7L247T reseptoriin. Asetyylikoliini toimi konventionaalisen agonistin mallina tutkimuksessa. Tutkimuksen toinen tavoite oli tehdä mutaatio M253Lalfa7-reseptorin transmembraaniosaan. Mutaation on todettu estävän allosteeristen potentiaattoreiden kykyä voimistaa agonistin aikaansaamaa vastetta. Tarkoitus oli tutkia millaisia vaikutuksia M253L-mutaatiolla on allosteerisen potentiaattorin kykyyn toimia agonistina L247T-mutaation sisältävään reseptoriin. Mutatoidun reseptorin mRNA mikroinjektoitiin oosyyttiin ja elektrofysiologian avulla tutkittiin ilmennettyjen reseptorien toimintaa käyttäen kahden elektrodin jännitelukitus -menetelmää. Kaikki suunnitellut mutaatiot saatiin tehtyä onnistuneesti alfa7- ja alfa7L247T-reseptoreihin. Ortosteerisen sitoutumiskohdan mutaatio villin tyypin Į7-reseptorissa vaikutti hyvin voimakkaasti joko asetyylikoliinin sitoutumiseen reseptoriin tai reseptorin toimintaan, sillä asetyylikoliinilla ei reseptorista saatu mitattua vasteita. Myöskään PNU-120596 yksinään ei saanut aikaan vasteita alfa7W149M-reseptorissa. Kaksoismutatoidussa alfa7W149M/L247T-reseptorissa puolestaan havaittiin, että asetyylikoliinin annos-vaste -kuvaaja siirtyi huomattavasti enemmän oikealle kuin PNU-120596:n, kun verrattiin annos-vaste –kuvaajia alfa7L247T ja alfa7W149M/L247T–reseptoreiden välillä. Transmembraaniosan mutaatio M253L ei vaikuttanut PNU-120596:n kykyyn toimia agonistina alfa7L247T-reseptoriin, eikä sillä ollut vaikutusta asetyylikoliinin annosvaste-kuvaajiin. Tutkimus tukee aiempia havaintoja siitä, että positiivisten allosteeristen modulaattoreiden sitoutumiskohta nikotiinireseptorissa sijaitsisi transmembraaniosassa. M253L-mutaation osalta tulokset ovat hieman ristiriidassa aiempien tulosten kanssa. L247T-mutaatio vaikuttaa hyvin voimakkaasti nikotiinireseptorin toimintaan sekä sijaitsee aminohapon M253 läheisyydessä. On mahdollista, että se peittää M253L-mutaation vaikutuksen. Toisaalta voi olla, että M253 on aminohappo, joka vaikuttaa vain reseptorivasteiden voimistumiseen eikä allosteeristen potentiaattoreiden sitoutumiseen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background/Aims: Somatostatin-14 (SRIF-14), a neuropeptide co-stored with acetylcholine in the cardiac parasympathetic innervation, exerts both positive and negative influences directly on contraction of ventricular cardiomyocytes, indicative of involvement of more than one of five known SRIF (SSTR) receptor subtypes. The aim was to characterize receptor subtype expression in adult rat ventricular cardiomyocytes and to investigate the influence of a series of SRIF (SSTR) subtype-selective agonists on contractile parameters. Methods: mRNA and protein expression of each receptor subtype were quantified by RT-PCR and immunoblotting respectively; for contraction studies, cells were stimulated at 0.5 Hz under basal conditions and in the presence of isoprenaline (ISO, 10-8M). Results: all five SRIF (SSTR) receptor subtypes were expressed in cardiomyocytes although SRIF1A (SSTR2) and SRIF2A (SSTR1) were less abundant than the other subtypes. L803087 (10-8M), a SRIF2B (SSTR4) agonist, attenuated ISO-stimulated peak contractile amplitude and prolonged relaxation time (T50). L796778 (10-7M), a SRIF1C (SSTR3) agonist, augmented basal and ISO-stimulated peak contractile amplitude; L779976 (10-8M) and L817818 (10-9M), agonists at SRIF1A (SSTR2) and SRIF1B (SSTR5) receptors, respectively, also augmented ISO-stimulated peak amplitude. Conclusion: these data support involvement of SRIF2B (SSTR4) receptors in the negative contractile effects of SRIF-14, while one or more of the three SRIF1 receptor subtypes (SSTR2, 3 or 5) may contribute to the positive contractile effects of SRIF-14.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS: Aldosterone plays a crucial role in cardiovascular disease. 'Systemic' inhibition of its mineralocorticoid receptor (MR) decreases atherosclerosis by reducing inflammation and oxidative stress. Obesity, an important cardiovascular risk factor, is an inflammatory disease associated with increased plasma aldosterone levels. We have investigated the role of the 'endothelial' MR in obesity-induced endothelial dysfunction, the earliest stage in atherogenesis. METHODS AND RESULTS: C57BL/6 mice were exposed to a normal chow diet (ND) or a high-fat diet (HFD) alone or in combination with the MR antagonist eplerenone (200 mg/kg/day) for 14 weeks. Diet-induced obesity impaired endothelium-dependent relaxation in response to acetylcholine, whereas eplerenone treatment of obese mice prevented this. Expression analyses in aortic endothelial cells isolated from these mice revealed that eplerenone attenuated expression of pro-oxidative NADPH oxidase (subunits p22phox, p40phox) and increased expression of antioxidative genes (glutathione peroxidase-1, superoxide dismutase-1 and -3) in obesity. Eplerenone did not affect obesity-induced upregulation of cyclooxygenase (COX)-1 or prostacyclin synthase. Endothelial-specific MR deletion prevented endothelial dysfunction in obese (exhibiting high 'endogenous' aldosterone) and in 'exogenous' aldosterone-infused lean mice. Pre-incubation of aortic rings from aldosterone-treated animals with the COX-inhibitor indomethacin restored endothelial function. Exogenous aldosterone administration induced endothelial expression of p22phox in the presence, but not in the absence of the endothelial MR. CONCLUSION: Obesity-induced endothelial dysfunction depends on the 'endothelial' MR and is mediated by an imbalance of oxidative stress-modulating mechanisms. Therefore, MR antagonists may represent an attractive therapeutic strategy in the increasing population of obese patients to decrease vascular dysfunction and subsequent atherosclerotic complications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parasympathetic system plays an important role in insulin secretion from the pancreas. Cholinergic effect on pancreatic beta cells exerts primarily through muscarinic receptors. In the present study we investigated the specific role of muscarinic M1 and M3 receptors in glucose induced insulin secretion from rat pancreatic islets in vitro. The involvement of muscarinic receptors was studied using the antagonist atropine. The role of muscarinic MI and M3 receptor subtypes was studied using subtype specific antagonists. Acetylcholine agonist, carbachol, stimulated glucose induced insulin secretion at low concentrations (10-8-10-5 M) with a maximum stimulation at 10-7 M concentration. Carbachol-stimulated insulin secretion was inhibited by atropine confirming the role of muscarinic receptors in cholinergic induced insulin secretion. Both M1 and M3 receptor antagonists blocked insulin secretion induced by carbachol. The results show that M3 receptors are functionally more prominent at 20 mM glucose concentration when compared to MI receptors. Our studies suggest that muscarinic M1 and M3 receptors function differentially regulate glucose induced insulin secretion, which has clinical significance in glucose homeostasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Muscarinic M1 and M3 receptor changes in the brain stem during pancreatic regeneration were investigated. Brain stem acetylcholine esterase activity decreased at the time of regeneration . Sympathetic activity also decreased as indicated by the norepinephrine (NE) and epinephrine (EPI) content of adrenals and also in the plasma. Muscarinic Ml and M3 receptors showed reciprocal changes in the brain stem during regeneration. Muscairnic M1 receptor number decreased at time of regeneration without any change in the affinity. High affinity M3 receptors showed an increase in the number. The affinity did not show any change . The number of low affinity receptors decreased with decreased Kd at 72 hours after partial pancreatectomy. The Kd reversed to control value with a reversal of the number of receptors to near control value . Gene expression studies also showed a similar change in the mRNA level of Ml and M3 receptors . These alterations in the muscarinic receptors regulate sympathetic activity and maintain glucose level during pancreatic regeneration. Central muscarinic M1 and M3 receptor subtypes functional balance is suggested to regulate sympathetic and parasympathetic activity, which in turn control the islet cell proliferation and glucose homeostasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work is an attempt to understand the role of acetylcholine muscarinic M1 and M3 receptors during pancreatic regeneration and insulin secretion. The work focuses on the changes in the muscarinic M1 and M3 receptors in brain and pancreas during pancreatic regeneration. The effect of these receptor subtypes on insulin secretion and pancreatic P-cell proliferation were studied in vitro using rat primary pancreatic islet culture. Muscarinic Ml and M3 receptor kinetics and gene expression studies during pancreatic regeneration and insulin secretion will help to elucidate the role of acetylcholine functional regulation of pancreatic u-cell proliferation and insulin secretion.The cholinergic system through muscarinic M1 and M3 receptors play an important role in the regulation of pancreatic (3-cell proliferation and insulin secretion . Cholinergic activity as indicated by acetylcholine esterase, a marker for cholinergic system, decreased in the brain regions - hypothalamus, brain stem, corpus striatum, cerebral cortex and cerebellum during pancreatic regeneration. Pancreatic muscarinic M1 and M3 receptor activity increased during proliferation indicating that both receptors are stimulatory to (3-cell division. Acetylcholine dose dependently increase EGF induced DNA synthesis in pancreatic islets in vitro, which is inhibited by muscarinic antagonist atropine confirming the role of muscarinic receptors. Muscarinic M1 and M3 receptor antagonists also block acetycholine induced DNA synthesis suggesting the importance of these receptors in regeneration. Acetylcholine also stimulated glucose induced insulin secretion in vitro which is inhibited by muscarinic M1 and M3 receptor antagonists. The muscarinic receptors activity and their functional balance in the brain and pancreas exert a profound influence in the insulin secretion and also regeneration of pancreas

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although contraction of human isolated bronchi is mediated mainly by tachykinin NK2 receptors, NK1 receptors, via prostanoid release, contract small-size (approximately 1 mm in diameter) bronchi. Here, we have investigated the presence and biological responses of NK1 receptors in medium-size (2-5 mm in diameter) human isolated bronchi. Specific staining was seen in bronchial sections with an antibody directed against the human NK1 receptor. The selective NK1 receptor agonist, [Sar(9), Met(O2)(11)]SP, contracted about 60% of human isolated bronchial rings. This effect was reduced by two different NK1 receptor antagonists, CP-99,994 and SR 140333. Contraction induced by [Sar(9), Met(O2)(11)]SP was independent of acetylcholine and histamine release and epithelium removal, and was not affected by nitric oxide synthase and cyclooxygenase (COX) inhibition. [Sar(9), Met(O2)(11)]SP increased inositol phosphate (IP) levels, and SR 140333 blocked this increase, in segments of medium- and small-size (approximately 1 mm in diameter) human bronchi. COX inhibition blocked the IP increase induced by [Sar(9), Met(O2)(11)]SP in small-size, but not in medium-size, bronchi. NK1 receptors mediated bronchoconstriction in a large proportion of medium-size human bronchi. Unlike small-size bronchi this effect is independent of prostanoid release, and the results are suggestive of a direct activation of smooth muscle receptors and IP release.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The P2Y(12) receptor antagonist clopidogrel blocks platelet aggregation, improves systemic endothelial nitric oxide bioavailability and has anti-inflammatory effects. Since P2Y(12) receptors have been identified in the vasculature, we hypothesized that clopidogrel ameliorates Angll (angiotensin II)-induced vascular functional changes by blockade of P2Y(12) receptors in the vasculature. Male Sprague Dawley rats were infused with Angll (60 ng/min) or vehicle for 14 days. The animals were treated with clopidogrel (10 mg . kg(-1) of body weight . day(-1)) or vehicle. Vascular reactivity was evaluated in second-order mesenteric arteries. Clopidogrel treatment did not change systolic blood pressure [(mmHg) control-vehicle, 117 +/- 7.1 versus control-clopidogrel, 125 +/- 4.2; Angll vehicle, 197 +/- 10.7 versus Angll clopidogrel, 198 +/- 5.2], but it normalized increased phenylephrine-induced vascular contractions [(%KCI) vehicle-treated, 182.2 +/- 18% versus clopidogrel, 133 +/- 14%), as well as impaired vasodilation to acetylcholine [(%) vehicle-treated, 71.7 +/- 2.2 versus clopidogrel, 85.3 +/- 2.8) in Angll-treated animals. Vascular expression of P2Y(12) receptor was determined by Western blot. Pharmacological characterization of vascular P2Y(12) was performed with the P2Y(12) agonist 2-MeS-ADP [2-(methylthio) adenosine 5`-trihydrogen diphosphate trisodium]. Although 2-MeS-ADP induced endothelium-dependent relaxation [(Emax %) = 71 +/- 12%) as well as contractile vascular responses (Emax % = 83 +/- 12%), these actions are not mediated by P2Y(12) receptor activation. 2-MeS-ADP produced similar vascular responses in control and Angll rats. These results indicate potential effects of clopidogrel, such as improvement of hypertension-related vascular functional changes that are not associated with direct actions of clopidogrel in the vasculature, supporting the concept that activated platelets contribute to endothelial dysfunction, possibly via impaired nitric oxide bioavailability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Moderate wine intake (i.e., 1-2 glasses of wine a day) is associated with a reduced risk of morbidity and mortality from cardiovascular disease. The aim of this study was to evaluate the anti-atherosclerotic effects of a nonalcoholic ethyl acetate fraction (EAF) from a South Brazilian red wine obtained from Vitis labrusca grapes. Experiments were carried out on low-density lipoprotein (LDL) receptor knockout (LDLr-/-) mice, which were subjected to a hypercholesterolemic diet and treated with doses of EAF (3, 10, and 30 mg/kg) for 12 weeks. At the end of the treatment, the level of plasma lipids, the vascular reactivity, and the atherosclerotic lesions were evaluated. Our results demonstrated that the treatment with EAF at 3 mg/kg significantly decreased total cholesterol, triglycerides, and LDL plus very low-density lipoprotein levels compared with control hypercholesterolemic mice. The treatment of mice with EAF at 3 mg/kg also preserved the vasodilatation induced by acetylcholine on isolated thoracic aorta from hypercholesterolemic LDLr-/- mice. This result is in agreement with the degree of lipid deposit on arteries. Taken together, the results show for the first time that the lowest concentration of an EAF obtained from a red wine produced in southern Brazil significantly reduced the progression of atherosclerosis in mice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ethanol intake is associated with increase in blood pressure, through unknown mechanisms. We hypothesized that acute ethanol intake enhances vascular oxidative stress and induces vascular dysfunction through renin-angiotensin system (RAS) activation. Ethanol (1 g/kg; p.o. gavage) effects were assessed within 30 min in male Wistar rats. The transient decrease in blood pressure induced by ethanol was not affected by the previous administration of losartan (10 mg/kg; p.o. gavage), a selective ATI receptor antagonist. Acute ethanol intake increased plasma renin activity (PRA), angiotensin converting enzyme (ACE) activity, plasma angiotensin I (ANG I) and angiotensin II (ANG II) levels. Ethanol induced systemic and vascular oxidative stress, evidenced by increased plasma thiobarbituric acid-reacting substances (TBARS) levels, NAD(P) H oxidase-mediated vascular generation of superoxide anion and p47phox translocation (cytosol to membrane). These effects were prevented by losartan. Isolated aortas from ethanol-treated rats displayed increased p38MAPK and SAPK/JNK phosphorylation. Losartan inhibited ethanol-induced increase in the phosphorylation of these kinases. Ethanol intake decreased acetylcholine-induced relaxation and increased phenylephrine-induced contraction in endothelium-intact aortas. Ethanol significantly decreased plasma and aortic nitrate levels. These changes in vascular reactivity and in the end product of endogenous nitric oxide metabolism were not affected by losartan. Our study provides novel evidence that acute ethanol intake stimulates RAS activity and induces vascular oxidative stress and redox-signaling activation through AT(1)-dependent mechanisms. These findings highlight the importance of RAS in acute ethanol-induced oxidative damage. (c) 2012 Elsevier Inc. All rights reserved.