962 resultados para NETWORK DYNAMICS
Neonatal dexamethasone induces premature microvascular maturation of the alveolar capillary network.
Resumo:
Postnatal glucocorticoid treatment of preterm infants was mimicked by treating newborn rats with dexamethasone (0.1-0.01 microg/g, days 1-4). This regimen has been shown to cause delayed alveolarization. Knowing that microvascular maturation (transformation of double- to single-layered capillary networks in alveolar septa) and septal thinning prevent further alveolarization, we measured septal maturation on electron photomicrographs in treated and control animals. In treated rats and before day 10, we observed a premature nonreversing microvascular maturation and a transient septal thinning, which both appeared focally. In vascular casts of both groups, we observed contacts between the two capillary layers of immature alveolar septa, which were predictive for capillary fusions. Studying serial electron microscopic sections of human lungs, we were able to confirm the postulated fusion process for the first time. We conclude that alveolar microvascular maturation indeed occurs by capillary fusion and that the dexamethasone-induced impairment of alveolarization is associated with focal premature capillary fusion.
Resumo:
Environmental policy and decision-making are characterized by complex interactions between different actors and sectors. As a rule, a stakeholder analysis is performed to understand those involved, but it has been criticized for lacking quality and consistency. This lack is remedied here by a formal social network analysis that investigates collaborative and multi-level governance settings in a rigorous way. We examine the added value of combining both elements. Our case study examines infrastructure planning in the Swiss water sector. Water supply and wastewater infrastructures are planned far into the future, usually on the basis of projections of past boundary conditions. They affect many actors, including the population, and are expensive. In view of increasing future dynamics and climate change, a more participatory and long-term planning approach is required. Our specific aims are to investigate fragmentation in water infrastructure planning, to understand how actors from different decision levels and sectors are represented, and which interests they follow. We conducted 27 semi-structured interviews with local stakeholders, but also cantonal and national actors. The network analysis confirmed our hypothesis of strong fragmentation: we found little collaboration between the water supply and wastewater sector (confirming horizontal fragmentation), and few ties between local, cantonal, and national actors (confirming vertical fragmentation). Infrastructure planning is clearly dominated by engineers and local authorities. Little importance is placed on longer-term strategic objectives and integrated catchment planning, but this was perceived as more important in a second analysis going beyond typical questions of stakeholder analysis. We conclude that linking a stakeholder analysis, comprising rarely asked questions, with a rigorous social network analysis is very fruitful and generates complementary results. This combination gave us deeper insight into the socio-political-engineering world of water infrastructure planning that is of vital importance to our well-being.
Resumo:
We have performed microfluidic experiments with erythrocytes passing through a network of microchannels of 20–25 μm width and 5 μm of height. Red blood cells (RBCs) were flowing in countercurrent directions through microchannels connected by μm pores. Thereby, we have observed interesting flow dynamics. All pores were blocked by erythrocytes. Some erythrocytes have passed through pores, depending on the channel size and cell elasticity. Many RBCs split into two or more smaller parts. Two types of splits were observed. In one type, the lipid bilayer and spectrin network were cut at the same time. In the second type, the lipid bilayer reconnected, but the part of spectrin network stayed outside the cell forming a rope like structure, which could eventually break. The microporous membrane results in multiple breakups of the cells, which can have various clinical implications, e.g., glomerulus hematuria and anemia of patients undergoing dialysis. The cell breakup procedure is similar to the one observed in the droplet breakage of viscoelastic liquids in confinement.
Resumo:
Patients with schizophrenia show abnormal dynamics and structure of temporally coherent networks (TCNs) assessed using fMRI, which undergo adaptive shifts in preparation for a cognitively demanding task. During working memory (WM) tasks, patients with schizophrenia show persistent deficits in TCNs as well as EEG indices of WM. Studying their temporal relationship during WM tasks might provide novel insights into WM performance deficits seen in schizophrenia. Simultaneous EEG-fMRI data were acquired during the performance of a verbal Sternberg WM task with two load levels (load 2 and load 5) in 17 patients with schizophrenia and 17 matched healthy controls. Using covariance mapping, we investigated the relationship of the activity in the TCNs before the memoranda were encoded and EEG spectral power during the retention interval. We assessed four TCNs – default mode network (DMN), dorsal attention network (dAN), left and right working memory networks (WMNs) – and three EEG bands – theta, alpha, and beta. In healthy controls, there was a load-dependent inverse relation between DMN and frontal midline theta power and an anti-correlation between DMN and dAN. Both effects were not significantly detectable in patients. In addition, healthy controls showed a left-lateralized load-dependent recruitment of the WMNs. Activation of the WMNs was bilateral in patients, suggesting more resources were recruited for successful performance on the WM task. Our findings support the notion of schizophrenia patients showing deviations in their neurophysiological responses before the retention of relevant information in a verbal WM task. Thus, treatment strategies as neurofeedback targeting prestates could be beneficial as task performance relies on the preparatory state of the brain.
Resumo:
Transient versus sustained ERK MAP kinase (MAPK) activation dynamics induce proliferation versus differentiation in response to epidermal (EGF) or nerve (NGF) growth factors in PC-12 cells. Duration of ERK activation has therefore been proposed to specify cell fate decisions. Using a biosensor to measure ERK activation dynamics in single living cells reveals that sustained EGF/NGF application leads to a heterogeneous mix of transient and sustained ERK activation dynamics in distinct cells of the population, different than the population average. EGF biases toward transient, while NGF biases toward sustained ERK activation responses. In contrast, pulsed growth factor application can repeatedly and homogeneously trigger ERK activity transients across the cell population. These datasets enable mathematical modeling to reveal salient features inherent to the MAPK network. Ultimately, this predicts pulsed growth factor stimulation regimes that can bypass the typical feedback activation to rewire the system toward cell differentiation irrespective of growth factor identity.
Resumo:
Objective: The present study offers a novel methodological contribution to the study of the configuration and dynamics of research groups, through a comparative perspective of the projects funded (inputs) and publication co-authorships (output). Method: A combination of bibliometric techniques and social network analysis was applied to a case study: the Departmento de Bibliotecología (DHUBI), Universidad Nacional de La Plata, Argentina, for the period 2000-2009. The results were interpreted statistically and staff members of the department, were interviewed. Results: The method makes it possible to distinguish groups, identify their members and reflect group make-up through an analytical strategy that involves the categorization of actors and the interdisciplinary and national or international projection of the networks that they configure. The integration of these two aspects (input and output) at different points in time over the analyzed period leads to inferences about group profiles and the roles of actors. Conclusions: The methodology presented is conducive to micro-level interpretations in a given area of study, regarding individual researchers or research groups. Because the comparative input-output analysis broadens the base of information and makes it possible to follow up, over time, individual and group trends, it may prove very useful for the management, promotion and evaluation of science
Resumo:
Objective: The present study offers a novel methodological contribution to the study of the configuration and dynamics of research groups, through a comparative perspective of the projects funded (inputs) and publication co-authorships (output). Method: A combination of bibliometric techniques and social network analysis was applied to a case study: the Departmento de Bibliotecología (DHUBI), Universidad Nacional de La Plata, Argentina, for the period 2000-2009. The results were interpreted statistically and staff members of the department, were interviewed. Results: The method makes it possible to distinguish groups, identify their members and reflect group make-up through an analytical strategy that involves the categorization of actors and the interdisciplinary and national or international projection of the networks that they configure. The integration of these two aspects (input and output) at different points in time over the analyzed period leads to inferences about group profiles and the roles of actors. Conclusions: The methodology presented is conducive to micro-level interpretations in a given area of study, regarding individual researchers or research groups. Because the comparative input-output analysis broadens the base of information and makes it possible to follow up, over time, individual and group trends, it may prove very useful for the management, promotion and evaluation of science
Resumo:
Objective: The present study offers a novel methodological contribution to the study of the configuration and dynamics of research groups, through a comparative perspective of the projects funded (inputs) and publication co-authorships (output). Method: A combination of bibliometric techniques and social network analysis was applied to a case study: the Departmento de Bibliotecología (DHUBI), Universidad Nacional de La Plata, Argentina, for the period 2000-2009. The results were interpreted statistically and staff members of the department, were interviewed. Results: The method makes it possible to distinguish groups, identify their members and reflect group make-up through an analytical strategy that involves the categorization of actors and the interdisciplinary and national or international projection of the networks that they configure. The integration of these two aspects (input and output) at different points in time over the analyzed period leads to inferences about group profiles and the roles of actors. Conclusions: The methodology presented is conducive to micro-level interpretations in a given area of study, regarding individual researchers or research groups. Because the comparative input-output analysis broadens the base of information and makes it possible to follow up, over time, individual and group trends, it may prove very useful for the management, promotion and evaluation of science
Resumo:
As part of the PeECE II mesocosm project, we investigated the effects of pCO2 levels on the initial step of heterotrophic carbon cycling in the surface ocean. The activities of microbial extracellular enzymes hydrolyzing 4 polysaccharides were measured during the development of a natural phytoplankton bloom under pCO2 conditions representing glacial (190 µatm) and future (750 µatm) atmospheric pCO2. We observed that (1) chondroitin hydrolysis was variable throughout the pre-, early- and late-bloom phases, (2) fucoidanase activity was measurable only in the glacial mesocosm as the bloom developed, (3) laminarinase activity was low and constant, and (4) xylanase activity declined as the bloom progressed. Concurrent measurements of microbial community composition, using denaturing-gradient gel electrophoresis (DGGE), showed that the 2 mesocosms diverged temporally, and from one another, especially in the late-bloom phase. Enzyme activities correlated with bloom phase and pCO2, suggesting functional as well as compositional changes in microbial communities in the different pCO2 environments. These changes, however, may be a response to temporal changes in the development of phytoplankton communities that differed with the pCO2 environment. We hypothesize that the phytoplankton communities produced dissolved organic carbon (DOC) differing in composition, a hypothesis supported by changing amino acid composition of the DOC, and that enzyme activities responded to changes in substrates. Enzyme activities observed under different pCO2 conditions likely reflect both genetic and population-level responses to changes occurring among multiple components of the microbial loop.
Resumo:
The design of a modern aircraft is based on three pillars: theoretical results, experimental test and computational simulations. As a results of this, Computational Fluid Dynamic (CFD) solvers are widely used in the aeronautical field. These solvers require the correct selection of many parameters in order to obtain successful results. Besides, the computational time spent in the simulation depends on the proper choice of these parameters. In this paper we create an expert system capable of making an accurate prediction of the number of iterations and time required for the convergence of a computational fluid dynamic (CFD) solver. Artificial neural network (ANN) has been used to design the expert system. It is shown that the developed expert system is capable of making an accurate prediction the number of iterations and time required for the convergence of a CFD solver.
Resumo:
Irradiation with swift heavy ions (SHI), roughly defined as those having atomic masses larger than 15 and energies exceeding 1 MeV/amu, may lead to significant modification of the irradiated material in a nanometric region around the (straight) ion trajectory (latent tracks). In the case of amorphous silica, SHI irradiation originates nano-tracks of higher density than the virgin material (densification). As a result, the refractive index is increased with respect to that of the surroundings. Moreover, track overlapping leads to continuous amorphous layers that present a significant contrast with respect to the pristine substrate. We have recently demonstrated that SHI irradiation produces a large number of point defects, easily detectable by a number of experimental techniques (work presented in the parallel conference ICDIM). The mechanisms of energy transfer from SHI to the target material have their origin in the high electronic excitation induced in the solid. A number of phenomenological approaches have been employed to describe these mechanisms: coulomb explosion, thermal spike, non-radiative exciton decay, bond weakening. However, a detailed microscopic description is missing due to the difficulty of modeling the time evolution of the electronic excitation. In this work we have employed molecular dynamics (MD) calculations to determine whether the irradiation effects are related to the thermal phenomena described by MD (in the ps domain) or to electronic phenomena (sub-ps domain), e.g., exciton localization. We have carried out simulations of up to 100 ps with large boxes (30x30x8 nm3) using a home-modified version of MDCASK that allows us to define a central hot cylinder (ion track) from which heat flows to the surrounding cold bath (unirradiated sample). We observed that once the cylinder has cooled down, the Si and O coordination numbers are 4 and 2, respectively, as in virgin silica. On the other hand, the density of the (cold) cylinder increases with respect to that of silica and, furthermore, the silica network ring size decreases. Both effects are in agreement with the observed densification. In conclusion, purely thermal effects do not explain the generation of point defects upon irradiation, but they do account for the silica densification.
Resumo:
Cuando una colectividad de sistemas dinámicos acoplados mediante una estructura irregular de interacciones evoluciona, se observan dinámicas de gran complejidad y fenómenos emergentes imposibles de predecir a partir de las propiedades de los sistemas individuales. El objetivo principal de esta tesis es precisamente avanzar en nuestra comprensión de la relación existente entre la topología de interacciones y las dinámicas colectivas que una red compleja es capaz de mantener. Siendo este un tema amplio que se puede abordar desde distintos puntos de vista, en esta tesis se han estudiado tres problemas importantes dentro del mismo que están relacionados entre sí. Por un lado, en numerosos sistemas naturales y artificiales que se pueden describir mediante una red compleja la topología no es estática, sino que depende de la dinámica que se desarrolla en la red: un ejemplo son las redes de neuronas del cerebro. En estas redes adaptativas la propia topología emerge como consecuencia de una autoorganización del sistema. Para conocer mejor cómo pueden emerger espontáneamente las propiedades comúnmente observadas en redes reales, hemos estudiado el comportamiento de sistemas que evolucionan según reglas adaptativas locales con base empírica. Nuestros resultados numéricos y analíticos muestran que la autoorganización del sistema da lugar a dos de las propiedades más universales de las redes complejas: a escala mesoscópica, la aparición de una estructura de comunidades, y, a escala macroscópica, la existencia de una ley de potencias en la distribución de las interacciones en la red. El hecho de que estas propiedades aparecen en dos modelos con leyes de evolución cuantitativamente distintas que siguen unos mismos principios adaptativos sugiere que estamos ante un fenómeno que puede ser muy general, y estar en el origen de estas propiedades en sistemas reales. En segundo lugar, proponemos una medida que permite clasificar los elementos de una red compleja en función de su relevancia para el mantenimiento de dinámicas colectivas. En concreto, estudiamos la vulnerabilidad de los distintos elementos de una red frente a perturbaciones o grandes fluctuaciones, entendida como una medida del impacto que estos acontecimientos externos tienen en la interrupción de una dinámica colectiva. Los resultados que se obtienen indican que la vulnerabilidad dinámica es sobre todo dependiente de propiedades locales, por tanto nuestras conclusiones abarcan diferentes topologías, y muestran la existencia de una dependencia no trivial entre la vulnerabilidad y la conectividad de los elementos de una red. Finalmente, proponemos una estrategia de imposición de una dinámica objetivo genérica en una red dada e investigamos su validez en redes con diversas topologías que mantienen regímenes dinámicos turbulentos. Se obtiene como resultado que las redes heterogéneas (y la amplia mayora de las redes reales estudiadas lo son) son las más adecuadas para nuestra estrategia de targeting de dinámicas deseadas, siendo la estrategia muy efectiva incluso en caso de disponer de un conocimiento muy imperfecto de la topología de la red. Aparte de la relevancia teórica para la comprensión de fenómenos colectivos en sistemas complejos, los métodos y resultados propuestos podrán dar lugar a aplicaciones en sistemas experimentales y tecnológicos, como por ejemplo los sistemas neuronales in vitro, el sistema nervioso central (en el estudio de actividades síncronas de carácter patológico), las redes eléctricas o los sistemas de comunicaciones. ABSTRACT The time evolution of an ensemble of dynamical systems coupled through an irregular interaction scheme gives rise to dynamics of great of complexity and emergent phenomena that cannot be predicted from the properties of the individual systems. The main objective of this thesis is precisely to increase our understanding of the interplay between the interaction topology and the collective dynamics that a complex network can support. This is a very broad subject, so in this thesis we will limit ourselves to the study of three relevant problems that have strong connections among them. First, it is a well-known fact that in many natural and manmade systems that can be represented as complex networks the topology is not static; rather, it depends on the dynamics taking place on the network (as it happens, for instance, in the neuronal networks in the brain). In these adaptive networks the topology itself emerges from the self-organization in the system. To better understand how the properties that are commonly observed in real networks spontaneously emerge, we have studied the behavior of systems that evolve according to local adaptive rules that are empirically motivated. Our numerical and analytical results show that self-organization brings about two of the most universally found properties in complex networks: at the mesoscopic scale, the appearance of a community structure, and, at the macroscopic scale, the existence of a power law in the weight distribution of the network interactions. The fact that these properties show up in two models with quantitatively different mechanisms that follow the same general adaptive principles suggests that our results may be generalized to other systems as well, and they may be behind the origin of these properties in some real systems. We also propose a new measure that provides a ranking of the elements in a network in terms of their relevance for the maintenance of collective dynamics. Specifically, we study the vulnerability of the elements under perturbations or large fluctuations, interpreted as a measure of the impact these external events have on the disruption of collective motion. Our results suggest that the dynamic vulnerability measure depends largely on local properties (our conclusions thus being valid for different topologies) and they show a non-trivial dependence of the vulnerability on the connectivity of the network elements. Finally, we propose a strategy for the imposition of generic goal dynamics on a given network, and we explore its performance in networks with different topologies that support turbulent dynamical regimes. It turns out that heterogeneous networks (and most real networks that have been studied belong in this category) are the most suitable for our strategy for the targeting of desired dynamics, the strategy being very effective even when the knowledge on the network topology is far from accurate. Aside from their theoretical relevance for the understanding of collective phenomena in complex systems, the methods and results here discussed might lead to applications in experimental and technological systems, such as in vitro neuronal systems, the central nervous system (where pathological synchronous activity sometimes occurs), communication systems or power grids.
Resumo:
This paper presents a multi-stage algorithm for the dynamic condition monitoring of a gear. The algorithm provides information referred to the gear status (fault or normal condition) and estimates the mesh stiffness per shaft revolution in case that any abnormality is detected. In the first stage, the analysis of coefficients generated through discrete wavelet transformation (DWT) is proposed as a fault detection and localization tool. The second stage consists in establishing the mesh stiffness reduction associated with local failures by applying a supervised learning mode and coupled with analytical models. To do this, a multi-layer perceptron neural network has been configured using as input features statistical parameters sensitive to torsional stiffness decrease and derived from wavelet transforms of the response signal. The proposed method is applied to the gear condition monitoring and results show that it can update the mesh dynamic properties of the gear on line.
Resumo:
Neuroimage experiments have been essential for identifying active brain networks. During cognitive tasks as in, e.g., aesthetic appreciation, such networks include regions that belong to the default mode network (DMN). Theoretically, DMN activity should be interrupted during cognitive tasks demanding attention, as is the case for aesthetic appreciation. Analyzing the functional connectivity dynamics along three temporal windows and two conditions, beautiful and not beautiful stimuli, here we report experimental support for the hypothesis that aesthetic appreciation relies on the activation of two different networks, an initial aesthetic network and a delayed aesthetic network, engaged within distinct time frames. Activation of the DMN might correspond mainly to the delayed aesthetic network. We discuss adaptive and evolutionary explanations for the relationships existing between the DMN and aesthetic networks and offer unique inputs to debates on the mind/brain interaction.
Resumo:
This paper presents the knowledge model of a distributed decision support system, that has been designed for the management of a national network in Ukraine. It shows how advanced Artificial Intelligence techniques (multiagent systems and knowledge modelling) have been applied to solve this real-world decision support problem: on the one hand its distributed nature, implied by different loci of decision-making at the network nodes, suggested to apply a multiagent solution; on the other, due to the complexity of problem-solving for local network administration, it was useful to apply knowledge modelling techniques, in order to structure the different knowledge types and reasoning processes involved. The paper sets out from a description of our particular management problem. Subsequently, our agent model is described, pointing out the local problem-solving and coordination knowledge models. Finally, the dynamics of the approach is illustrated by an example.