999 resultados para NEODYMIUM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The radiogenic isotope composition of the Rare Earth Element (REE) neodymium (Nd) is a powerful water mass proxy for present and past ocean circulation. The processes controlling the Nd budget of the global ocean are not quantitatively understood and in particular source and sink mechanisms are still under debate. In this study we present the first full water column data set of dissolved Nd isotope compositions and Nd concentrations for the Eastern Equatorial Pacific (EEP), where one of the globally largest Oxygen Minimum Zones (OMZ) is located. This region is of particular interest for understanding the biogeochemical cycling of REEs because anoxic conditions may lead to release of REEs from the shelf, whereas high particle densities and fluxes potentially remove the REEs from the water column. Data were obtained between 11400N and 161S along a nearshore and an offshore transect. Near surface zonal current bands, such as the Equatorial Undercurrent (EUC) and the Subsurface Countercurrent (SSCC), which are supplying oxygen-rich water to the OMZ are characterized by radiogenic Nd isotope signatures (eNd=-2). Surface waters in the northernmost part of the study area are even more radiogenic (eNd = +3), most likely due to release of Nd from volcanogenic material. Deep and bottom waters at the southernmost offshore station (141S) are clearly controlled by advection of water masses with less radiogenic signatures (eNd=- 7) originating from the Southern Ocean. Towards the equator, however, the deep waters show a clear trend towards more radiogenic values of up to eNd=-2. The northernmost station located in the Panama basin shows highly radiogenic Nd isotope signatures in the entire water column, which indicates that particle scavenging, downward transport and release processes play an important role. This is supported by relatively low Nd concentrations in deep waters (3000-6000 m) in the EEP (20 pmol/kg) compared to locations in the Northern and Central Pacific (40-60 pmol/kg), which suggests enhanced removal of Nd in the EEP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The early oceanographic history of the Arctic Ocean is important in regulating, and responding to, climatic changes. However, constraints on its oceanographic history preceding the Quaternary (the past 1.8 Myr) have become available only recently, because of the difficulties associated with obtaining continuous sediment records in such a hostile setting. Here, we use the neodymium isotope compositions of two sediment cores recovered near the North Pole to reconstruct over the past ~5 Myr the sources contributing to Arctic Intermediate Water, a water mass found today at depths of 200 to 1,500 m. We interpret high neodymium ratios for the period between 15 and 2 Myr ago, and for the glacial periods thereafter, as indicative of weathering input from the Siberian Putoranan basalts into the Arctic Ocean. Arctic Intermediate Water was then derived from brine formation in the Eurasian shelf regions, with only a limited contribution of intermediate water from the North Atlantic. In contrast, the modern circulation pattern, with relatively high contributions of North Atlantic Intermediate Water and negligible input from brine formation, exhibits low neodymium isotope ratios and is typical for the interglacial periods of the past 2 Myr. We suggest that changes in climatic conditions and the tectonic setting were responsible for switches between these two modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiogenic isotopes of hafnium (Hf) and neodymium (Nd) are powerful tracers for water mass transport and trace metal cycling in the present and past oceans. However, due to the scarcity of available data the processes governing their distribution are not well understood. Here we present the first combined dissolved Hf and Nd isotope and concentration data from surface waters of the Atlantic sector of the Southern Ocean. The samples were collected along the Zero Meridian, in the Weddell Sea and in the Drake Passage during RV Polarstern expeditions ANT-XXIV/3 and ANT-XXIII/3 in the frame of the International Polar Year (IPY) and the GEOTRACES program. The general distribution of Hf and Nd concentrations in the region is similar. However, at the northernmost station located 200 km southwest of Cape Town a pronounced increase of the Nd concentration is observed, whereas the Hf concentration is minimal, suggesting much less Hf than Nd is released by the weathering of the South African Archean cratonic rocks. From the southern part of the Subtropical Front (STF) to the Polar Front (PF) Hf and Nd show the lowest concentrations (<0.12 pmol/kg and 10 pmol/kg, respectively), most probably due to the low terrigenous flux in this area and efficient scavenging of Hf and Nd by biogenic opal. In the vicinity of landmasses the dissolved Hf and Nd isotope compositions are clearly labelled by terrigenous inputs. Near South Africa Nd isotope values as low as epsilon-Nd = -18.9 indicate unradiogenic inputs supplied via the Agulhas Current. Further south the isotopic data show significant increases to epsilon-Hf = 6.1 and epsilon-Nd = -4.0 documenting exchange of seawater Nd and Hf with the Antarctic Peninsula. In the open Southern Ocean the Nd isotope compositions are relatively homogeneous (epsilon-Nd ~ -8 to -8.5) towards the STF, within the Antarctic Circumpolar Current, in the Weddell Gyre, and the Drake Pasage. The Hf isotope compositions in the entire study area only show a small range between epsilon-Hf = +6.1 and +2.8 support Hf to be more readily released from young mafic rocks compared to old continental ones. The Nd isotope composition ranges from epsilon-Nd = -18.9 to -4.0 showing Nd isotopes to be a sensitive tracer for the provenance of weathering inputs into surface waters of the Southern Ocean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Be and Nd isotope compositions and metal concentrations (Mn, Fe, Co, Ni, and Cu) of surface and subsurface ferromanganese hardground crusts from Ocean Drilling Program Leg 194 Marion Plateau Sites 1194 and 1196 provide new insights into the crusts' genesis, growth rates, and ages. Metal compositions indicate that the hardgrounds, which have grown on erosional surfaces in water depths of <400 m because of strong bottom currents, are not pure hydrogenetic precipitates. Nevertheless, the ratios between cosmogenic 10Be and stable 9Be in hardgrounds from the present-day seafloor at Site 1196 between 1 x 10**-7 and 1.5 x 10**-7 are within the range of values expected for Pacific seawater, which shows that the hardgrounds recorded the isotope composition of ambient seawater. This is also confirmed by their Nd isotope composition (epsilon Nd between -3 and 0). The 10Be/9Be ratios in the up to 30-mm-thick and partly laminated hardgrounds do not show a decrease with depth, which suggests high growth rates on the present-day seafloor. The subsurface crust at Site 1194 (117 m below the seafloor) grew during a sedimentation hiatus, when bottom currents in the late Miocene prevented sediment accumulation on the carbonate platform during a sea level lowstand. The age of 8.65 ± 0.50 Ma for this crust obtained from 10Be-based dating agrees well with the combined seismostratigraphic and biostratigraphic evidence, which suggests an age for the hiatus between 7.7 and 11.8 Ma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The South Pacific is a sensitive location for the variability of the global oceanic thermohaline circulation given that deep waters from the Atlantic Ocean, the Southern Ocean, and the Pacific Basin are exchanged. Here we reconstruct the deep water circulation of the central South Pacific for the last two glacial cycles (from 240,000 years ago to the Holocene) based on radiogenic neodymium (Nd) and lead (Pb) isotope records complemented by benthic stable carbon data obtained from two sediment cores located on the flanks of the East Pacific Rise. The records show small but consistent glacial/interglacial changes in all three isotopic systems with interglacial average values of -5.8 and 18.757 for epsilon Nd and 206Pb/204Pb, respectively, whereas glacial averages are -5.3 and 18.744. Comparison of this variability of Circumpolar Deep Water (CDW) to previously published records along the pathway of the global thermohaline circulation is consistent with reduced admixture of North Atlantic Deep Water to CDW during cold stages. The absolute values and amplitudes of the benthic delta13C variations are essentially indistinguishable from other records of the Southern Hemisphere and confirm that the low central South Pacific sedimentation rates did not result in a significant reduction of the amplitude of any of the measured proxies. In addition, the combined detrital Nd and strontium (87Sr/86Sr) isotope signatures imply that Australian and New Zealand dust has remained the principal contributor of lithogenic material to the central South Pacific.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the inception of the international GEOTRACES program, studies investigating the distribution of trace elements and their isotopes in the global ocean have significantly increased. In spite of this large-scale effort, the distribution of neodymium isotopes (143Nd/144Nd) and concentrations ([Nd]) in the high latitude south Pacific is still understudied. Here we report dissolved Nd isotopes and concentrations from 11 vertical water column profiles from the south Pacific between South America and New Zealand. Results suggest that Ross Sea Bottom Water (RSBW) is represented by an epsilon-Nd value of ~ -7, and is thus more radiogenic than Circumpolar Deep Water (epsilon-Nd ~ -8). RSBW and its characteristic epsilon-Nd signature can be traced far into the SE Pacific until progressive mixing with ambient Lower Circumpolar Deep water (LCDW) dilutes this signal north of the Antarctic Polar Front (APF). The SW-NE trending Pacific-Antarctic Ridge restricts the advection of RSBW into the SW Pacific, where bottom water density, salinity, and epsilon-Nd values of -9 indicate the presence of bottom waters of an origin different from the Ross Sea. Neodymium concentrations show low surface concentrations and a linear increase with depth north of the Polar Front. South of the APF, surface [Nd] is high and increases with depth but remains almost constant below ~1000 m. This vertical and spatial [Nd] pattern follows the southward shoaling density surfaces of the Southern Ocean frontal system and hence suggests supply of Nd to the upper ocean through upwelling of Nd-rich deep water. Low particle abundance dominated by reduced opal production and seasonal sea ice cover likely contributes to the maintenance of the high upper ocean [Nd] south of the APF. The reported data highlights the use of Nd isotopes as a water mass tracer in the Southern Ocean, with the potential for paleocenaographic reconstructions, and contributes to an improved understanding of Nd biogeochemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Atlantic Meridional Overturning Circulation (AMOC) plays an important role in the Northern Hemisphere climate system. Significant interest went into the question of how excessive freshwater input through melting of continental ice can affect its overturning vigor and, hence, heat supply, to higher northern latitudes. Such forcing can be tested by investigating its behavior during extreme iceberg discharge events into the open North Atlantic during the last glacial period, the so-called Heinrich events (HE). Here we present neodymium (Nd) isotope compositions of past seawater, a sensitive chemical water mass tag, extracted from sediments of Ocean Drilling Program Site 1063 in the western North Atlantic (Bermuda Rise), covering the period surrounding HE 2, the Last Glacial Maximum, and the early deglaciation. These data are compared with a record of the kinematic circulation tracer (231Pa/230Th)xs extracted from the same sediment core. Both tracers indicate significant circulation changes preceding intense ice rafting during HE 2 by almost 2 kyr. Moreover, the Nd isotope record suggests the presence of deeply ventilating North Atlantic Deep Water early during Marine Isotope Stage 2 until it was replaced by Southern Source Water at ~27 ka. The early switch to high (Pa/Th)xs and radiogenic epsilon-Nd in relation to intensified ice rafting during HE 2 suggests that ice rafting into the open North Atlantic during major HE 2 was preceded by an early change of the AMOC. This opens the possibility that variations in AMOC contributed to or even triggered the ice sheet instability rather than merely responding to it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean Drilling Program sampling of the distal passive margin of South China at Sites 1147 and 1148 has yielded clay-rich hemipelagic sediments dating to 32 Ma (Oligocene), just prior to the onset of seafloor spreading in the South China Sea. The location of the drill sites offshore the Pearl River suggests that this river, or its predecessor, may have been the source of the sediment in the basin, which accounts for only not, vert, similar ~1.8% of the total Neogene sediment in the Asian marginal seas. A mean erosion depth of not, vert, similar ~1 km over the current Pearl River drainage basin is sufficient to account for the sediment volume on the margin. Two-dimensional backstripping of across-margin seismic profiles shows that sedimentation rates peaked during the middle Miocene (11-16 Ma) and the Pleistocene (since 1.8 Ma). Nd isotopic analysis of clays yielded epsilonNd values of -7.7 to -11.0, consistent with the South China Block being the major source of sediment. More positive epsilonNd values during and shortly after rifting compared to later sedimentation reflect preferential erosion at that time of more juvenile continental arc rocks exposed along the margin. As the drainage basin developed and erosion shifted from within the rift to the continental interior epsilonNd values became more negative. A rapid change in the clay mineralogy from smectite-dominated to illite dominated at not, vert, similar 15.5 Ma, synchronous with middle Miocene rapid sedimentation, mostly reflects a change to a wetter, more erosive climate. Evidence that the elevation of the Tibetan Plateau and erosion in the western Himalaya both peaked close to this time supports the suggestion that the Asian monsoon became much more intense at that time, much earlier than the 8.5 Ma age commonly accepted.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sr and Nd isotopic compositions of Arctic marine sediments characterize changes of sediment source regions and trace shelf-ocean particle pathways during glacial-interglacial transitions in the eastern Arctic Ocean. In the 140-ka sedimentary record of a marine core from Yermak Plateau, north of Svalbard, 87Sr/86Sr ratios and epsion-Nd values vary between 0.717 and 0.740 and 39.3 and 314.9, respectively. Sr and Nd isotopic composition both change characteristically during glacial-interglacial cycles and are correlated with the extension of the Svalbard/Barents Sea ice sheet (SBIS). The downcore variation in Sr and Nd isotopic composition indicates climatically induced changes in sediment provenance from two isotopically distinct end-members: (1) Eurasian shelf sediments as a distal source; and (2) Svalbard bedrock as a proximal source that coincide with a change in transport mechanism from sea ice to glacial ice. During glacier advance from Svalbard and intensified glacial bedrock erosion, epsion-Nd values decrease gradually to a minimum value of 314.9 due to increased input of crystalline Svalbard bedrock material. During glacial maxima, the SBIS covered the entire Barents Sea shelf and supplied increasing amounts of Eurasian shelf material to the Arctic Ocean as ice rafted detritus (IRD). Epsion-Nd values in glacial sediments reach maximum values that are comparable to the average value of modern Eurasian shelf and sea ice sediments (epsion-Nd = 310.3). This confirms ice rafting as a major sediment transport mechanism for Eurasian shelf sediments into the Arctic Ocean and trace a sediment origin from the Kara Sea/Laptev Sea shelf area. After the decay of the shelf-based SBIS, the glacial shelf sediment spikes during glacial terminations I (epsion-Nd = 310.6) and II (epsion-Nd = 310.1) epsion-Nd values rapidly decrease to values of 312.5 typical for interglacial averages. The downcore Sr isotopic composition is anticorrelated to the Nd isotopic composition, but may be also influenced by grain-size effects. In contrast, the Nd isotopic composition in clay- to silt-size fractions of one bulk sediment sample is similar to within 0.3-0.8 epsion-Nd units and seems to be a grain-size independent provenance tracer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissolved seawater neodymium isotopes, radium isotopes and rare earth element concentrations measured in coastal waters around Oahu and at HOT-ALOHA. Data from R/V Kilo Moana cruise KM1107 supplement by data from Kilo Moana cruises KM1215 (Hoe-Dylan V), KM1219 (Hoe-Dylan IX), KM1309 (Hoe-Phor I) and KM1316 (Hoe-Phor II).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neodymium isotopes measured on chemically uncleaned planktic foraminifera from cores throughout the Atlantic Ocean. Samples are Holocene and Last Glacial Maximum in age.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the past decades, rare earth elements (REE) and their radioactive isotopes have received tremendous attention in sedimentary geochemistry, as tracers for the geological history of the continental crust and provenance studies. In this study, we report on elemental concentrations and neodymium (Nd) isotopic compositions for a large number of sediments collected near the mouth of rivers worldwide, including some of the world’s major rivers. Sediments were leached for removal of non-detrital components, and both clay and silt fractions were retained for separate geochemical analyses. Our aim was to re-examine, at the scale of a large systematic survey, whether or not REE and Nd isotopes could be fractionated during Earth surface processes. Our results confirmed earlier assumptions that river sediments do not generally exhibit any significant grain-size dependent Nd isotopic variability. Most sediments from rivers draining old cratonic areas, sedimentary systems and volcanic provinces displayed similar Nd isotopic signatures in both clay and silt fractions, with ΔεNd (clay-silt) < |1.| A subtle decoupling of Nd isotopes between clays and silts was identified however in a few major river systems (e.g. Nile, Mississippi, Fraser), with clays being systematically shifted towards more radiogenic values. This observation suggests that preferential weathering of volcanic and/or sedimentary rocks relative to more resistant lithologies may occur in river basins, possibly leading locally to Nd isotopic decoupling between different size fractions. Except for volcanogenic sediments, silt fractions generally displayed homogeneous REE concentrations, exhibiting relatively flat shale-normalized patterns. However, clay fractions were almost systematically characterized by a progressive enrichment from the heavy to the light REE and a positive europium (Eu) anomaly. In agreement with results from previous soil investigations, the observed REE fractionation between clays and silts is probably best explained by preferential alteration of feldspars and/or accessory mineral phases. Importantly, this finding clearly indicates that silicate weathering can lead to decoupling of REE between different grain-size fractions, with implications for sediment provenance studies. Finally, we propose a set of values for a World River Average Clay (WRAC) and Average Silt (WRAS), which provide new estimates for the average composition of the weathered and eroded upper continental crust, respectively, and could be used for future comparison purposes.