957 resultados para Multivariate statistical methods
Resumo:
Antecedentes: El interés en las enfermedades autoinmunes (EA) y su desenlace en la unidad de cuidado intensivo (UCI) han incrementado debido al reto clínico que suponen para el diagnóstico y manejo, debido a que la mortalidad en UCI fluctúa entre el 17 – 55 %. El siguiente trabajo representa la experiencia de un año de nuestro grupo en un hospital de tercer nivel. Objetivo: Identificar factores asociados a mortalidad particulares de los pacientes con enfermedades autoinmunes que ingresan a una UCI, de un hospital de tercer nivel en Bogotá, Colombia. Métodos: El uso de análisis de componentes principales basado en el método descriptivo multivariado y análisis de múltiple correspondencia fue realizado para agrupar varias variables relacionadas con asociación significativa y contexto clínico común. Resultados: Cincuenta pacientes adultos con EA con una edad promedio de 46,7 ± 17,55 años fueron evaluados. Los dos diagnósticos más comunes fueron lupus eritematoso sistémico y esclerosis sistémica, con una frecuencia de 45% y 20% de los pacientes respectivamente. La principal causa de admisión en la UCI fue la infección seguido de actividad aguda de la EA, 36% y 24% respectivamente. La mortalidad durante la estancia en UCI fue del 24%. El tiempo de hospitalización antes de la admisión a la UCI, el choque, soporte vasopresor, ventilación mecánica, sepsis abdominal, Glasgow bajo y plasmaféresis fueron factores asociados con mortalidad. Dos fenotipos de variables fueron definidos relacionadas con tiempo en la UCI y medidas de soporte en UCI, las cuales fueron asociadas supervivencia y mortalidad. Conclusiones: La identificación de factores individuales y grupos de factores por medio del análisis de componentes principales permitirá la implementación de medidas terapéutica de manera temprana y agresiva en pacientes con EA en la UCI para evitar desenlaces fatales.
Resumo:
La implementació de la Directiva Europea 91/271/CEE referent a tractament d'aigües residuals urbanes va promoure la construcció de noves instal·lacions al mateix temps que la introducció de noves tecnologies per tractar nutrients en àrees designades com a sensibles. Tant el disseny d'aquestes noves infraestructures com el redisseny de les ja existents es va portar a terme a partir d'aproximacions basades fonamentalment en objectius econòmics degut a la necessitat d'acabar les obres en un període de temps relativament curt. Aquests estudis estaven basats en coneixement heurístic o correlacions numèriques provinents de models determinístics simplificats. Així doncs, moltes de les estacions depuradores d'aigües residuals (EDARs) resultants van estar caracteritzades per una manca de robustesa i flexibilitat, poca controlabilitat, amb freqüents problemes microbiològics de separació de sòlids en el decantador secundari, elevats costos d'operació i eliminació parcial de nutrients allunyant-les de l'òptim de funcionament. Molts d'aquestes problemes van sorgir degut a un disseny inadequat, de manera que la comunitat científica es va adonar de la importància de les etapes inicials de disseny conceptual. Precisament per aquesta raó, els mètodes tradicionals de disseny han d'evolucionar cap a sistemes d'avaluació mes complexos, que tinguin en compte múltiples objectius, assegurant així un millor funcionament de la planta. Tot i la importància del disseny conceptual tenint en compte múltiples objectius, encara hi ha un buit important en la literatura científica tractant aquest camp d'investigació. L'objectiu que persegueix aquesta tesi és el de desenvolupar un mètode de disseny conceptual d'EDARs considerant múltiples objectius, de manera que serveixi d'eina de suport a la presa de decisions al seleccionar la millor alternativa entre diferents opcions de disseny. Aquest treball de recerca contribueix amb un mètode de disseny modular i evolutiu que combina diferent tècniques com: el procés de decisió jeràrquic, anàlisi multicriteri, optimació preliminar multiobjectiu basada en anàlisi de sensibilitat, tècniques d'extracció de coneixement i mineria de dades, anàlisi multivariant i anàlisi d'incertesa a partir de simulacions de Monte Carlo. Això s'ha aconseguit subdividint el mètode de disseny desenvolupat en aquesta tesis en quatre blocs principals: (1) generació jeràrquica i anàlisi multicriteri d'alternatives, (2) anàlisi de decisions crítiques, (3) anàlisi multivariant i (4) anàlisi d'incertesa. El primer dels blocs combina un procés de decisió jeràrquic amb anàlisi multicriteri. El procés de decisió jeràrquic subdivideix el disseny conceptual en una sèrie de qüestions mes fàcilment analitzables i avaluables mentre que l'anàlisi multicriteri permet la consideració de diferent objectius al mateix temps. D'aquesta manera es redueix el nombre d'alternatives a avaluar i fa que el futur disseny i operació de la planta estigui influenciat per aspectes ambientals, econòmics, tècnics i legals. Finalment aquest bloc inclou una anàlisi de sensibilitat dels pesos que proporciona informació de com varien les diferents alternatives al mateix temps que canvia la importància relativa del objectius de disseny. El segon bloc engloba tècniques d'anàlisi de sensibilitat, optimització preliminar multiobjectiu i extracció de coneixement per donar suport al disseny conceptual d'EDAR, seleccionant la millor alternativa un cop s'han identificat decisions crítiques. Les decisions crítiques són aquelles en les que s'ha de seleccionar entre alternatives que compleixen de forma similar els objectius de disseny però amb diferents implicacions pel que respecte a la futura estructura i operació de la planta. Aquest tipus d'anàlisi proporciona una visió més àmplia de l'espai de disseny i permet identificar direccions desitjables (o indesitjables) cap on el procés de disseny pot derivar. El tercer bloc de la tesi proporciona l'anàlisi multivariant de les matrius multicriteri obtingudes durant l'avaluació de les alternatives de disseny. Específicament, les tècniques utilitzades en aquest treball de recerca engloben: 1) anàlisi de conglomerats, 2) anàlisi de components principals/anàlisi factorial i 3) anàlisi discriminant. Com a resultat és possible un millor accés a les dades per realitzar la selecció de les alternatives, proporcionant més informació per a una avaluació mes efectiva, i finalment incrementant el coneixement del procés d'avaluació de les alternatives de disseny generades. En el quart i últim bloc desenvolupat en aquesta tesi, les diferents alternatives de disseny són avaluades amb incertesa. L'objectiu d'aquest bloc és el d'estudiar el canvi en la presa de decisions quan una alternativa és avaluada incloent o no incertesa en els paràmetres dels models que descriuen el seu comportament. La incertesa en el paràmetres del model s'introdueix a partir de funcions de probabilitat. Desprès es porten a terme simulacions Monte Carlo, on d'aquestes distribucions se n'extrauen números aleatoris que es subsisteixen pels paràmetres del model i permeten estudiar com la incertesa es propaga a través del model. Així és possible analitzar la variació en l'acompliment global dels objectius de disseny per a cada una de les alternatives, quines són les contribucions en aquesta variació que hi tenen els aspectes ambientals, legals, econòmics i tècnics, i finalment el canvi en la selecció d'alternatives quan hi ha una variació de la importància relativa dels objectius de disseny. En comparació amb les aproximacions tradicionals de disseny, el mètode desenvolupat en aquesta tesi adreça problemes de disseny/redisseny tenint en compte múltiples objectius i múltiples criteris. Al mateix temps, el procés de presa de decisions mostra de forma objectiva, transparent i sistemàtica el perquè una alternativa és seleccionada en front de les altres, proporcionant l'opció que més bé acompleix els objectius marcats, mostrant els punts forts i febles, les principals correlacions entre objectius i alternatives, i finalment tenint en compte la possible incertesa inherent en els paràmetres del model que es fan servir durant les anàlisis. Les possibilitats del mètode desenvolupat es demostren en aquesta tesi a partir de diferents casos d'estudi: selecció del tipus d'eliminació biològica de nitrogen (cas d'estudi # 1), optimització d'una estratègia de control (cas d'estudi # 2), redisseny d'una planta per aconseguir eliminació simultània de carboni, nitrogen i fòsfor (cas d'estudi # 3) i finalment anàlisi d'estratègies control a nivell de planta (casos d'estudi # 4 i # 5).
Resumo:
The North Atlantic Oscillation (NAO) is an important large-scale atmospheric circulation that influences the European countries climate. This study evaluated NAO impact in air quality in Porto Metropolitan Area (PMA), Portugal, for the period 2002-2006. NAO, air pollutants and meteorological data were statistically analyzed. All data were obtained from PMA Weather Station, PMA Air Quality Stations and NOAA analysis. Two statistical methods were applied in different time scale : principal component and correlation coefficient. Annual time scale, using multivariate analysis (PCA, principal component analysis), were applied in order to identified positive and significant association between air pollutants such as PM10, PM2.5, CO, NO and NO2, with NAO. On the other hand, the correlation coefficient using seasonal time scale were also applied to the same data. The results of PCA analysis present a general negative significant association between the total precipitation and NAO, in Factor 1 and 2 (explaining around 70% of the variance), presented in the years of 2002, 2004 and 2005. During the same years, some air pollutants (such as PM10, PM2.5, SO2, NOx and CO) present also a positive association with NAO. The O3 shows as well a positive association with NAP during 2002 and 2004, at 2nd Factor, explaining 30% of the variance. From the seasonal analysis using correlation coefficient, it was found significant correlation between PM10 (0.72., p<0.05, in 2002), PM2.5 (0 74, p<0.05, in 2004), and SO2 (0.78, p<0.01, in 2002) with NAO during March-December (no winter period) period. Significant associations between air pollutants and NAO were also verified in the winter period (December to April) mainly with ozone (2005, r=-0.55, p.<0.01). Once that human health and hospital morbidities may be affected by air pollution, the results suggest that NAO forecast can be an important tool to prevent them, in the Iberian Peninsula and specially Portugal.
Resumo:
In conventional phylogeographic studies, historical demographic processes are elucidated from the geographical distribution of individuals represented on an inferred gene tree. However, the interpretation of gene trees in this context can be difficult as the same demographic/geographical process can randomly lead to multiple different genealogies. Likewise, the same gene trees can arise under different demographic models. This problem has led to the emergence of many statistical methods for making phylogeographic inferences. A popular phylogeographic approach based on nested clade analysis is challenged by the fact that a certain amount of the interpretation of the data is left to the subjective choices of the user, and it has been argued that the method performs poorly in simulation studies. More rigorous statistical methods based on coalescence theory have been developed. However, these methods may also be challenged by computational problems or poor model choice. In this review, we will describe the development of statistical methods in phylogeographic analysis, and discuss some of the challenges facing these methods.
Resumo:
Background: Molecular tools may help to uncover closely related and still diverging species from a wide variety of taxa and provide insight into the mechanisms, pace and geography of marine speciation. There is a certain controversy on the phylogeography and speciation modes of species-groups with an Eastern Atlantic-Western Indian Ocean distribution, with previous studies suggesting that older events (Miocene) and/or more recent (Pleistocene) oceanographic processes could have influenced the phylogeny of marine taxa. The spiny lobster genus Palinurus allows for testing among speciation hypotheses, since it has a particular distribution with two groups of three species each in the Northeastern Atlantic (P. elephas, P. mauritanicus and P. charlestoni) and Southeastern Atlantic and Southwestern Indian Oceans (P. gilchristi, P. delagoae and P. barbarae). In the present study, we obtain a more complete understanding of the phylogenetic relationships among these species through a combined dataset with both nuclear and mitochondrial markers, by testing alternative hypotheses on both the mutation rate and tree topology under the recently developed approximate Bayesian computation (ABC) methods. Results: Our analyses support a North-to-South speciation pattern in Palinurus with all the South-African species forming a monophyletic clade nested within the Northern Hemisphere species. Coalescent-based ABC methods allowed us to reject the previously proposed hypothesis of a Middle Miocene speciation event related with the closure of the Tethyan Seaway. Instead, divergence times obtained for Palinurus species using the combined mtDNA-microsatellite dataset and standard mutation rates for mtDNA agree with known glaciation-related processes occurring during the last 2 my. Conclusion: The Palinurus speciation pattern is a typical example of a series of rapid speciation events occurring within a group, with very short branches separating different species. Our results support the hypothesis that recent climate change-related oceanographic processes have influenced the phylogeny of marine taxa, with most Palinurus species originating during the last two million years. The present study highlights the value of new coalescent-based statistical methods such as ABC for testing different speciation hypotheses using molecular data.
Resumo:
Covariation in the structural composition of the gut microbiome and the spectroscopically derived metabolic phenotype (metabotype) of a rodent model for obesity were investigated using a range of multivariate statistical tools. Urine and plasma samples from three strains of 10-week-old male Zucker rats (obese (fa/fa, n = 8), lean (fal-, n = 8) and lean (-/-, n = 8)) were characterized via high-resolution H-1 NMR spectroscopy, and in parallel, the fecal microbial composition was investigated using fluorescence in situ hydridization (FISH) and denaturing gradient gel electrophoresis (DGGE) methods. All three Zucker strains had different relative abundances of the dominant members of their intestinal microbiota (FISH), with the novel observation of a Halomonas and a Sphingomonas species being present in the (fa/fa) obese strain on the basis of DGGE data. The two functionally and phenotypically normal Zucker strains (fal- and -/-) were readily distinguished from the (fa/fa) obese rats on the basis of their metabotypes with relatively lower urinary hippurate and creatinine, relatively higher levels of urinary isoleucine, leucine and acetate and higher plasma LDL and VLDL levels typifying the (fa/fa) obese strain. Collectively, these data suggest a conditional host genetic involvement in selection of the microbial species in each host strain, and that both lean and obese animals could have specific metabolic phenotypes that are linked to their individual microbiomes.
Resumo:
A recent report in Consciousness and Cognition provided evidence from a study of the rubber hand illusion (RHI) that supports the multisensory principle of inverse effectiveness (PoIE). I describe two methods of assessing the principle of inverse effectiveness ('a priori' and 'post-hoc'), and discuss how the post-hoc method is affected by the statistical artefact of,regression towards the mean'. I identify several cases where this artefact may have affected particular conclusions about the PoIE, and relate these to the historical origins of 'regression towards the mean'. Although the conclusions of the recent report may not have been grossly affected, some of the inferential statistics were almost certainly biased by the methods used. I conclude that, unless such artefacts are fully dealt with in the future, and unless the statistical methods for assessing the PoIE evolve, strong evidence in support of the PoIE will remain lacking. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
We explore the potential for making statistical decadal predictions of sea surface temperatures (SSTs) in a perfect model analysis, with a focus on the Atlantic basin. Various statistical methods (Lagged correlations, Linear Inverse Modelling and Constructed Analogue) are found to have significant skill in predicting the internal variability of Atlantic SSTs for up to a decade ahead in control integrations of two different global climate models (GCMs), namely HadCM3 and HadGEM1. Statistical methods which consider non-local information tend to perform best, but which is the most successful statistical method depends on the region considered, GCM data used and prediction lead time. However, the Constructed Analogue method tends to have the highest skill at longer lead times. Importantly, the regions of greatest prediction skill can be very different to regions identified as potentially predictable from variance explained arguments. This finding suggests that significant local decadal variability is not necessarily a prerequisite for skillful decadal predictions, and that the statistical methods are capturing some of the dynamics of low-frequency SST evolution. In particular, using data from HadGEM1, significant skill at lead times of 6–10 years is found in the tropical North Atlantic, a region with relatively little decadal variability compared to interannual variability. This skill appears to come from reconstructing the SSTs in the far north Atlantic, suggesting that the more northern latitudes are optimal for SST observations to improve predictions. We additionally explore whether adding sub-surface temperature data improves these decadal statistical predictions, and find that, again, it depends on the region, prediction lead time and GCM data used. Overall, we argue that the estimated prediction skill motivates the further development of statistical decadal predictions of SSTs as a benchmark for current and future GCM-based decadal climate predictions.
Integrated cytokine and metabolic analysis of pathological responses to parasite exposure in rodents
Resumo:
Parasitic infections cause a myriad of responses in their mammalian hosts, on immune as well as on metabolic level. A multiplex panel of cytokines and metabolites derived from four parasite-rodent models, namely, Plasmodium berghei-mouse, Trypanosoma brucei brucei-mouse, Schistosoma mansoni-mouse, and Fasciola hepatica-rat were statistically coanalyzed. 1H NMR spectroscopy and multivariate statistical analysis were used to characterize the urine and plasma metabolite profiles in infected and noninfected animals. Each parasite generated a unique metabolic signature in the host. Plasma cytokine concentrations were obtained using the ‘Meso Scale Discovery’ multi cytokine assay platform. Multivariate data integration methods were subsequently used to elucidate the component of the metabolic signature which is associated with inflammation and to determine specific metabolic correlates with parasite-induced changes in plasma cytokine levels. For example, the relative levels of acetyl glycoproteins extracted from the plasma metabolite profile in the P. berghei-infected mice were statistically correlated with IFN-γ, whereas the same cytokine was anticorrelated with glucose levels. Both the metabolic and the cytokine data showed a similar spatial distribution in principal component analysis scores plots constructed for the combined murine data, with samples from all infected animals clustering according to the parasite species and whereby the protozoan infections (P. berghei and T. b. brucei) grouped separately from the helminth infection (S. mansoni). For S. mansoni, the main infection-responsive cytokines were IL-4 and IL-5, which covaried with lactate, choline, and D-3-hydroxybutyrate. This study demonstrates that the inherently differential immune response to single and multicellular parasites not only manifests in the cytokine expression, but also consequently imprints on the metabolic signature, and calls for in-depth analysis to further explore direct links between immune features and biochemical pathways.
Resumo:
Background, aim and scope Soil organic matter (SOM) is known to increase with time as landscapes recover after a major disturbance; however, little is known about the evolution of the chemistry of SOM in reconstructed ecosystems. In this study, we assessed the development of SOM chemistry in a chronosequence (space for time substitution) of restored Jarrah forest sites in Western Australia. Materials and methods Replicated samples were taken at the surface of the mineral soil as well as deeper in the profile at sites of 1, 3, 6, 9, 12, and 17 years of age. A molecular approach was developed to distinguish and quantify numerous individual compounds in SOM. This used accelerated solvent extraction in conjunction with gas chromatography mass spectrometry. A novel multivariate statistical approach was used to assess changes in accelerated solvent extraction (ASE)-gas chromatography-mass spectrometry (GCMS) spectra. This enabled us to track SOM developmental trajectories with restoration time. Results Results showed total carbon concentrations approached that of native forests soils by 17 years of restoration. Using the relate protocol in PRIMER, we demonstrated an overall linear relationship with site age at both depths, indicating that changes in SOM chemistry were occurring. Conclusions The surface soils were seen to approach native molecular compositions while the deeper soil retained a more stable chemical signature, suggesting litter from the developing diverse plant community has altered SOM near the surface. Our new approach for assessing SOM development, combining ASE-GCMS with illuminating multivariate statistical analysis, holds great promise to more fully develop ASE for the characterisation of SOM.
Resumo:
Data available on continuos-time diffusions are always sampled discretely in time. In most cases, the likelihood function of the observations is not directly computable. This survey covers a sample of the statistical methods that have been developed to solve this problem. We concentrate on some recent contributions to the literature based on three di§erent approaches to the problem: an improvement of the Euler-Maruyama discretization scheme, the use of Martingale Estimating Functions and the application of Generalized Method of Moments (GMM).
Resumo:
Data available on continuous-time diffusions are always sampled discretely in time. In most cases, the likelihood function of the observations is not directly computable. This survey covers a sample of the statistical methods that have been developed to solve this problem. We concentrate on some recent contributions to the literature based on three di§erent approaches to the problem: an improvement of the Euler-Maruyama discretization scheme, the employment of Martingale Estimating Functions, and the application of Generalized Method of Moments (GMM).
Resumo:
Ecomorphology is a science based on the idea that morphological differences among species could be associated with distinct biological and environmental pressures suffered by them. These differences can be studied employing morphological and biometric indexes denominated Ecomorphological attributes , representing standards that express characteristics of the individual in relation to its environment, and can be interpreted as indicators of life habits or adaptations suffered due its occupation of different habitats. This work aims to contribute for the knowledge of the ecomorphology of the Brazilian marine ichthyofauna, specifically from Galinhos, located at Rio Grande do Norte state. 10 different species of fish were studied, belonging the families Gerreidae (Eucinostomus argenteus), Haemulidae (Orthopristis ruber,Pomadasyscorvinaeformis,Haemulonaurolineatum,Haemulonplumieri,Haemulonsteindachneri), Lutjanidae (Lutjanus synagris), Paralichthyidae (Syaciummicrurum), Bothidae (Bothus ocellatus) and Tetraodontidae (Sphoeroidestestudineus), which were obtained during five collections, in the period time of September/2004 to April/2005, utilizing three special nets. The ecomorphological study was performed at the laboratory. Eight to ten samples of each fish specie were measured. Fifteen morphological aspects were considered to calculate twelve ecomorphological attributes. Multivariate statistical analysis methods such as Principal Component Analysis (PCA) and Cluster Analysis were done to identify ecmorphological patterns to describe the data set obtained. As results, H.aurolineatumwas the most abundant specie found (23,03%) and S.testudineusthe less one with 0,23%. The 1st Principal component showed variation of 60,03% with influence of the ecomorphological attribute related to body morphology, while the 2nd PC with 23,25% variation had influence of the ecomorphological attribute related to oral morphology. The Cluster Analiysis promoted the identification of three distinct groups Perciformes, Pleuronectiformes and Tetraodontiformes. Based on the obtained data, considering morphological characters differences among the species studied, we suggest that all of them live at the medium (E.argenteus,O.rubber, P.corvinaeformis,H.aurolineatum,H.plumieri,H.steindachneri,L.synagris) and bottom (S.micrurum,B.ocellatus,S.testudineus) region of column water.
Resumo:
O objetivo deste estudo foi avaliar a possibilidade de agrupar talhões de cana-de-açúcar colhida mecanicamente e sem queima prévia da palha na região de Ribeirão Preto-SP, de acordo com o potencial de infestação de plantas daninhas, por meio de análise de agrupamento por método hierárquico e outras técnicas de análise multivariada, utilizando como variável o índice de infestação relativa atribuído por avaliações visuais, em duas etapas. A primeira contemplou 20 talhões de cana-planta com ciclo de 18 meses; essas áreas foram utilizadas para comparação de dois métodos de estimativa da composição específica da flora daninha: análise fitossociológica e por meio da porcentagem visual de cobertura geral (CG) e específica (CE). A segunda etapa consistiu no levantamento da composição específica da comunidade de plantas daninhas em 189 talhões, em áreas de cana-soca colhidas durante a safra de 2008, incluindo nesses talhões apenas CG e CE. Com as informações sobre os levantamentos da comunidade infestante foi construído um banco de dados, posteriormente submetido a análises exploratórias por técnicas de estatística multivariada. Para as principais espécies dentro dos talhões, que foram DIGNU, ARACH, IPOHF, MRRCI e IPOQU, seguidas de CYPRO, ELEIN e EPHHS, foram verificados 75% de coincidências de resultados entre os dois métodos de avaliação. Também notou-se que as avaliações visuais de porcentagem de cobertura das espécies podem substituir, para fins de praticidade, agilidade e aplicabilidade, as avaliações fitossociológicas, uma vez que proporcionaram boa capacidade de detecção das principais plantas daninhas dentro de cada talhão. As técnicas de estatística multivariada demonstraram que os talhões podem ser agrupados de acordo com semelhanças na intensidade da infestação e na composição específica.