967 resultados para Multiple-trait Evolution
Resumo:
Introduction Societies of ants, bees, wasps and termites dominate many terrestrial ecosystems (Wilson 1971). Their evolutionary and ecological success is based upon the regulation of internal conflicts (e.g. Ratnieks et al. 2006), control of diseases (e.g. Schmid-Hempel 1998) and individual skills and collective intelligence in resource acquisition, nest building and defence (e.g. Camazine 2001). Individuals in social species can pass on their genes not only directly trough their own offspring, but also indirectly by favouring the reproduction of relatives. The inclusive fitness theory of Hamilton (1963; 1964) provides a powerful explanation for the evolution of reproductive altruism and cooperation in groups with related individuals. The same theory also led to the realization that insect societies are subject to internal conflicts over reproduction. Relatedness of less-than-one is not sufficient to eliminate all incentive for individual selfishness. This would indeed require a relatedness of one, as found among cells of an organism (Hardin 1968; Keller 1999). The challenge for evolutionary biology is to understand how groups can prevent or reduce the selfish exploitation of resources by group members, and how societies with low relatedness are maintained. In social insects the evolutionary shift from single- to multiple queens colonies modified the relatedness structure, the dispersal, and the mode of colony founding (e.g. (Crozier & Pamilo 1996). In ants, the most common, and presumably ancestral mode of reproduction is the emission of winged males and females, which found a new colony independently after mating and dispersal flights (Hölldobler & Wilson 1990). The alternative reproductive tactic for ant queens in multiple-queen colonies (polygyne) is to seek to be re-accepted in their natal colonies, where they may remain as additional reproductives or subsequently disperse on foot with part of the colony (budding) (Bourke & Franks 1995; Crozier & Pamilo 1996; Hölldobler & Wilson 1990). Such ant colonies can contain up to several hundred reproductive queens with an even more numerous workforce (Cherix 1980; Cherix 1983). As a consequence in polygynous ants the relatedness among nestmates is very low, and workers raise brood of queens to which they are only distantly related (Crozier & Pamilo 1996; Queller & Strassmann 1998). Therefore workers could increase their inclusive fitness by preferentially caring for their closest relatives and discriminate against less related or foreign individuals (Keller 1997; Queller & Strassmann 2002; Tarpy et al. 2004). However, the bulk of the evidence suggests that social insects do not behave nepotistically, probably because of the costs entailed by decreased colony efficiency or discrimination errors (Keller 1997). Recently, the consensus that nepotistic behaviour does not occur in insect colonies was challenged by a study in the ant Formica fusca (Hannonen & Sundström 2003b) showing that the reproductive share of queens more closely related to workers increases during brood development. However, this pattern can be explained either by nepotism with workers preferentially rearing the brood of more closely related queens or intrinsic differences in the viability of eggs laid by queens. In the first chapter, we designed an experiment to disentangle nepotism and differences in brood viability. We tested if workers prefer to rear their kin when given the choice between highly related and unrelated brood in the ant F. exsecta. We also looked for differences in egg viability among queens and simulated if such differences in egg viability may mistakenly lead to the conclusion that workers behave nepotistically. The acceptance of queens in polygnous ants raises the question whether the varying degree of relatedness affects their share in reproduction. In such colonies workers should favour nestmate queens over foreign queens. Numerous studies have investigated reproductive skew and partitioning of reproduction among queens (Bourke et al. 1997; Fournier et al. 2004; Fournier & Keller 2001; Hammond et al. 2006; Hannonen & Sundström 2003a; Heinze et al. 2001; Kümmerli & Keller 2007; Langer et al. 2004; Pamilo & Seppä 1994; Ross 1988; Ross 1993; Rüppell et al. 2002), yet almost no information is available on whether differences among queens in their relatedness to other colony members affects their share in reproduction. Such data are necessary to compare the relative reproductive success of dispersing and non-dispersing individuals. Moreover, information on whether there is a difference in reproductive success between resident and dispersing queens is also important for our understanding of the genetic structure of ant colonies and the dynamics of within group conflicts. In chapter two, we created single-queen colonies and then introduced a foreign queens originating from another colony kept under similar conditions in order to estimate the rate of queen acceptance into foreign established colonies, and to quantify the reproductive share of resident and introduced queens. An increasing number of studies have investigated the discrimination ability between ant workers (e.g. Holzer et al. 2006; Pedersen et al. 2006), but few have addressed the recognition and discrimination behaviour of workers towards reproductive individuals entering colonies (Bennett 1988; Brown et al. 2003; Evans 1996; Fortelius et al. 1993; Kikuchi et al. 2007; Rosengren & Pamilo 1986; Stuart et al. 1993; Sundström 1997; Vásquez & Silverman in press). These studies are important, because accepting new queens will generally have a large impact on colony kin structure and inclusive fitness of workers (Heinze & Keller 2000). In chapter three, we examined whether resident workers reject young foreign queens that enter into their nest. We introduced mated queens into their natal nest, a foreign-female producing nest, or a foreign male-producing nest and measured their survival. In addition, we also introduced young virgin and mated queens into their natal nest to examine whether the mating status of the queens influences their survival and acceptance by workers. On top of polgyny, some ant species have evolved an extraordinary social organization called 'unicoloniality' (Hölldobler & Wilson 1977; Pedersen et al. 2006). In unicolonial ants, intercolony borders are absent and workers and queens mix among the physically separated nests, such that nests form one large supercolony. Super-colonies can become very large, so that direct cooperative interactions are impossible between individuals of distant nests. Unicoloniality is an evolutionary paradox and a potential problem for kin selection theory because the mixing of queens and workers between nests leads to extremely low relatedness among nestmates (Bourke & Franks 1995; Crozier & Pamilo 1996; Keller 1995). A better understanding of the evolution and maintenance of unicoloniality requests detailed information on the discrimination behavior, dispersal, population structure, and the scale of competition. Cryptic genetic population structure may provide important information on the relevant scale to be considered when measuring relatedness and the role of kin selection. Theoretical studies have shown that relatedness should be measured at the level of the `economic neighborhood', which is the scale at which intraspecific competition generally takes place (Griffin & West 2002; Kelly 1994; Queller 1994; Taylor 1992). In chapter four, we conducted alarge-scale study to determine whether the unicolonial ant Formica paralugubris forms populations that are organised in discrete supercolonies or whether there is a continuous gradation in the level of aggression that may correlate with genetic isolation by distance and/or spatial distance between nests. In chapter five, we investigated the fine-scale population structure in three populations of F. paralugubris. We have developed mitochondria) markers, which together with the nuclear markers allowed us to detect cryptic genetic clusters of nests, to obtain more precise information on the genetic differentiation within populations, and to separate male and female gene flow. These new data provide important information on the scale to be considered when measuring relatedness in native unicolonial populations.
Resumo:
We sequenced 998 base pairs (bp) of mitochondrial DNA cytochrome b and 799 bp of nuclear gene BRCA1 in the Lesser white-toothed shrew (Crocidura suaveolens group) over its geographic range from Portugal to Japan. The aims of the study were to identify the main clades within the group and respective refugia resulting from Pleistocene glaciations. Analyses revealed the Asian lesser white-toothed shrew (C. shantungensis) as the basal clade, followed by a major branch of C. suaveolens, subdivided sensu stricto into six clades, which split-up in the Upper Pliocene and Lower Pleistocene (1.9-0.9 Myr). The largest clade, occurring over a huge range from east Europe to Mongolia, shows evidence of population expansion after a bottleneck. West European clades originated from Iberian and Italo-Balkanic refugia. In the Near East, three clades evolved in an apparent hotspot of refugia (west Turkey, south-west and south-east of the Caucasus). Most clades include specimens of different morphotypes and the validity of many taxa in the C. suaveolens group has to be re-evaluated.
Resumo:
A multivariate morphometric study of the Greater white-toothed shrew (C. russula) throughout its Palearctic range was carried out to search for patterns of geographic variation within the species boundary. Burnaby's and multiple group principal component analysis allowed the adjustment of raw data with respect to within-sample allometric variation. Multivariate 'size-free' results show a stepped dine with the phenotypical trait reduction and shape change from the eastern to the western Maghreb. Pleistocene fossil mandibles proved to have low phenetic distances with eastern populations (Tunisia, east Algeria) and it is argued that their character set is the primitive condition. The ancestral Mid-Pleistocene shrews lived in a relatively more humid climate. Gee-climatic changes in the north African range during the Quaternary provoked phenetic variation of C. russula and, it can be argued, evolution of the modern western C.r. yebalensis. A historical process can thus be assumed as the main cause of this categorical variation, by segmentation of the species range due to gee-climatic events. Morphometric discontinuity within the C. russula Maghreb range is shown to be congruent with karyological and biochemical studies. Moroccan and Tunisian shrews differ, for example, in NFa chromosomes and electrophoretical traits. A stasipatric process should be invoked to explain categorical variation in the Maghreb range. Colonization and divergence of insular populations results in more or less differentiated geographic races. The populations of Ibiza and Pantelleria are close to the species threshold (Nei's D greater than or equal to 0.1). The process of speciation undergone by the Greater white-toothed shrew results in a complex pattern of geographic variation, including both allopatric and non-allopatric modes.
Resumo:
Limited migration results in kin selective pressure on helping behaviors under a wide range of ecological, demographic and life-history situations. However, such genetically determined altruistic helping can evolve only when migration is not too strong and group size is not too large. Cultural inheritance of helping behaviors may allow altruistic helping to evolve in groups of larger size because cultural transmission has the potential to markedly decrease the variance within groups and augment the variance between groups. Here, we study the co-evolution of culturally inherited altruistic helping behaviors and two alternative cultural transmission rules for such behaviors. We find that conformist transmission, where individuals within groups tend to copy prevalent cultural variants (e.g., beliefs or values), has a strong adverse effect on the evolution of culturally inherited helping traits. This finding is at variance with the commonly held view that conformist transmission is a crucial factor favoring the evolution of altruistic helping in humans. By contrast, we find that under one-to-many transmission, where individuals within groups tend to copy a "leader" (or teacher), altruistic helping can evolve in groups of any size, although the cultural transmission rule itself hitchhikes rather weakly with a selected helping trait. Our results suggest that culturally determined helping behaviors are more likely to be driven by "leaders" than by popularity, but the emergence and stability of the cultural transmission rules themselves should be driven by some extrinsic factors.
Resumo:
Background: Research in epistasis or gene-gene interaction detection for human complex traits has grown over the last few years. It has been marked by promising methodological developments, improved translation efforts of statistical epistasis to biological epistasis and attempts to integrate different omics information sources into the epistasis screening to enhance power. The quest for gene-gene interactions poses severe multiple-testing problems. In this context, the maxT algorithm is one technique to control the false-positive rate. However, the memory needed by this algorithm rises linearly with the amount of hypothesis tests. Gene-gene interaction studies will require a memory proportional to the squared number of SNPs. A genome-wide epistasis search would therefore require terabytes of memory. Hence, cache problems are likely to occur, increasing the computation time. In this work we present a new version of maxT, requiring an amount of memory independent from the number of genetic effects to be investigated. This algorithm was implemented in C++ in our epistasis screening software MBMDR-3.0.3. We evaluate the new implementation in terms of memory efficiency and speed using simulated data. The software is illustrated on real-life data for Crohn’s disease. Results: In the case of a binary (affected/unaffected) trait, the parallel workflow of MBMDR-3.0.3 analyzes all gene-gene interactions with a dataset of 100,000 SNPs typed on 1000 individuals within 4 days and 9 hours, using 999 permutations of the trait to assess statistical significance, on a cluster composed of 10 blades, containing each four Quad-Core AMD Opteron(tm) Processor 2352 2.1 GHz. In the case of a continuous trait, a similar run takes 9 days. Our program found 14 SNP-SNP interactions with a multiple-testing corrected p-value of less than 0.05 on real-life Crohn’s disease (CD) data. Conclusions: Our software is the first implementation of the MB-MDR methodology able to solve large-scale SNP-SNP interactions problems within a few days, without using much memory, while adequately controlling the type I error rates. A new implementation to reach genome-wide epistasis screening is under construction. In the context of Crohn’s disease, MBMDR-3.0.3 could identify epistasis involving regions that are well known in the field and could be explained from a biological point of view. This demonstrates the power of our software to find relevant phenotype-genotype higher-order associations.
Resumo:
Quantitative trait loci analysis of natural Arabidopsis thaliana accessions is increasingly exploited for gene isolation. However, to date this has mostly revealed deleterious mutations. Among them, a loss-of-function allele identified the root growth regulator BREVIS RADIX (BRX). Here we present evidence that BRX and the paralogous BRX-LIKE (BRXL) genes are under selective constraint in monocotyledons as well as dicotyledons. Unexpectedly, however, whereas none of the Arabidopsis orthologs except AtBRXL1 could complement brx null mutants when expressed constitutively, nearly all monocotyledon BRXLs tested could. Thus, BRXL proteins seem to be more diversified in dicotyledons than in monocotyledons. This functional diversification was correlated with accelerated rates of sequence divergence in the N-terminal regions. Population genetic analyses of 30 haplotypes are suggestive of an adaptive role of AtBRX and AtBRXL1. In two accessions, Lc-0 and Lov-5, seven amino acids are deleted in the variable region between the highly conserved C-terminal, so-called BRX domains. Genotyping of 42 additional accessions also found this deletion in Kz-1, Pu2-7, and Ws-0. In segregating recombinant inbred lines, the Lc-0 allele (AtBRX(Lc-0)) conferred significantly enhanced root growth. Moreover, when constitutively expressed in the same regulatory context, AtBRX(Lc-0) complemented brx mutants more efficiently than an allele without deletion. The same was observed for AtBRXL1, which compared with AtBRX carries a 13 amino acid deletion that encompasses the deletion found in AtBRX(Lc-0). Thus, the AtBRX(Lc-0) allele seems to contribute to natural variation in root growth vigor and provides a rare example of an experimentally confirmed, hyperactive allelic variant.
Resumo:
Astract: The aim of this thesis was to investigate how the presence of multiple queens (polygyny) affects social organization in colonies of the ant Formica exsecta. This is important because polygyny results in reduced relatedness among colony members and therefore reflects a potential paradox for altruistic cooperation being explained by inclusive fitness theory. The reason for this is that workers in polygynous colonies rear no longer only their siblings (high inclusive fitness gain) but also more distantly ox even unrelated brood (low or no inclusive fitness gain). All research projects conducted in this thesis are novel and significant contributions to the understanding of the social evolution of insect societies. We used a mixture of experimental and observational methodologies in laboratory and field colonies of F. exsecta to examine four important aspects of social life that are impacted by polygyny. First, we investigated the influence of queen number on colony sex allocation and found that the number of queens present in a colony significantly affects colony sex ratio investment. The data were consistent with the queen-replenishment hypothesis, which is based on the observation that newly mated queens are often recruited back to their parental nest. According to this theory, colonies containing many queens should only produce males due to local resource competition (i.e. related queens compete for common resources), whereas colonies hosting few queens benefit most from producing new queens to ensure colony survival. Second, we examined how reproduction is partitioned among nestmate queens. We detected a novel pattern of reproductive partitioning whereby a high proportion of queens were completely specialized in the production of only a subset of offspring classes produced within a colony, which might translate into great differences in reproductive success between queens. Third, we could demonstrate that F. exsecta workers indiscriminately reared highly related and unrelated brood although such nepotistic behaviour (preferential rearing of relatives) would be predicted by inclusive fitness theory. The absence of nepotism is probably best explained by its negative effects on overall colony efficiency. Finally, we conducted a detailed population genetic analysis, which revealed that the genetic population structure is different for queens and workers. Our data were best explained with queens forming family-based groups (multicolonial population structure), whereas workers from several nests seemed to be grouped into larger unites (unicolonial population structure) with workers moving freely between neighbouring nests. Altogether, the presented work significantly increased our understanding of the complex organization of polygynous social insect colonies and shows how an important life history trait such as queen number affects social organization at various levels. Résumé: Le but de cette thèse était d'étudier comment la présence de plusieurs reines par colonie (polygynie) influence la vie sociale chez la fourmi Formica exsecta. Ce sujet est important parce que la polygynie chez les insectes sociaux présente un passible paradoxe au niveau de la théorie du "fitness inclusive". Ce paradoxe est basé sur le fait que les ouvrières n'élèvent plus uniquement leurs frères et soeurs (gain de "fitness inclusive" maximale), mais également des individus moins ou pas du tout apparentés (gain de "fitness inclusive" réduit ou absent). Tous les projets de recherche présentés au cours de cette thèse apportent une meilleure compréhension et connaissance au niveau de l'organisation des colonies chez les insectes sociaux. Nous avons employé des méthodes d'observation et de laboratoire afin de mettre en évidence des aspects importants de la vie sociale chez les fourmis influencés par la polygynie. Quatre aspects ont été caractérisés : (1) l'influence du nombre de reines sur le sexe ratio produit par la colonie. Nous avons démontré que les colonies contenant beaucoup de reines produisaient rarement des reines tandis que les colonies contenant peu de reines souvent investissaient beaucoup de ressources dans la production des reines. Ces résultats sont en accord avec la "queen-replenishment hypothesis" qui est basé sur l'observation que les nouvelles reines sont recrutées dans la colonie où elles étaient nées. Cette hypothèse postule que la production des reines est défavorable dans les colonies contenant beaucoup de reines, parce que ces reines apparentées, rentrent en compétition pour des ressources communes. Au contraire, la production des reines est favorable dans des colonies contenant peu de reines afin d'assurer la survie de la colonie ; (2) comment les reines dans une colonie répartissent leur reproduction. Nous avons mis en évidence un nouveau pattern de cette répartition où une grande proportion de reines est complètement spécialisée dans la production d'un seul type de couvain ce qui probablement aboutit à des différences significatives entre reines dans le succès reproducteur ; (3) la capacité des ouvrières à discriminer un couvain de soeur d'un couvain non apparenté. Les résultats ont montré que les ouvrières ne font pas de discrimination entre le couvain de soeur et le couvain non apparenté ce qui n'est pas en accord avec la théorie de la "fitness inclusive". Cette absence de discrimination est probablement due à des effets négatifs comme par exemple la diminution de la production du couvain; (4) la structure génétique d'une population de F. exsecta. Nous avons mis en évidence que la structure génétique entre des groupes de reines est significativement différente de la structure génétique entre des groupes d'ouvrières. Les données suggèrent que les reines forment des groupes basés sur une structure familiale tandis que les ouvrières sont groupées dans des unités plus grandes.
Resumo:
Abstract The giant hogweed (Heracleum mantegazzianum) has successfully invaded 19 European countries as well as parts of North America. It has become a problematic species due to its ability to displace native flora and to cause public health hazards. Applying population genetics to species invasion can help reconstruct invasion history and may promote more efficient management practice. We thus analysed levels of genetic variation and population genetic structure of H. mantegazzianum in an invaded area of the western Swiss Alps as well as in its native range (the Caucasus), using eight nuclear microsatellite loci together with plastid DNA markers and sequences. On both nuclear and plastid genomes, native populations exhibited significantly higher levels of genetic diversity compared to invasive populations, confirming an important founder event during the invasion process. Invasive populations were also significantly more differentiated than native populations. Bayesian clustering analysis identified five clusters in the native range that corresponded to geographically and ecologically separated groups. In the invaded range, 10 clusters occurred. Unlike native populations, invasive clusters were characterized by a mosaic pattern in the landscape, possibly caused by anthropogenic dispersal of the species via roads and direct collection for ornamental purposes. Lastly, our analyses revealed four main divergent groups in the western Swiss Alps, likely as a consequence of multiple independent establishments of H. mantegazzianum.
Resumo:
PURPOSE: To assess the evolution of sexual dysfunctions among young males after an average of 15 months follow-up to determine the predictive factors for this evolution and the characteristics differentiating young males who continue reporting a sexual dysfunction from those who do not. METHODS: We conducted a prospective cohort study in two Swiss military recruitment centers mandatory for all Swiss national males aged 18-25 years. A total of 3,700 sexually active young males filled out a questionnaire at baseline (T0) and follow-up (T1: 15.5 months later). Main outcome measures were self-reported premature ejaculation (PE) and erectile dysfunction (ED). RESULTS: Overall, 43.9% of young males who reported (PE) and 51% of those reporting (ED) at T0 still reported it at T1. Moreover, 9.7% developed a PE problem and 14.4% developed an ED problem between T0 and T1. Poor mental health, depression, and consumption of medication without prescription were predictive factors for PE and ED. Poor physical health, alcohol consumption, and less sexual experience were predictive factors for PE. ED persistence was associated with having multiple sexual partners. CONCLUSIONS: This is the first longitudinal study to examine sexual dysfunctions among young males. Our results show high prevalence rates among young males for maintaining or developing a sexual dysfunction over time. Consequently, when consulting with young males, health professionals should inquire about sexual dysfunctions as part of their routine psychosocial assessment and leave the subject open for discussion. Future research should examine in more detail the relationship between sexual dysfunctions and poor mental health.
Resumo:
OBJECTIVE: - Clinical observations and a review of the literature led us to hypothesize that certain personality and character traits could provide improved understanding, and thus improved prevention, of suicidal behaviour among young women with eating disorders. METHOD: - The clinical group consisted of 152 women aged between 18 and 24 years, with DSM-IV anorexia nervosa/restrictive type (AN-R = 66), anorexia nervosa/purging type (AN-P = 37), bulimia nervosa/non-purging type (BN-NP = 9), or bulimia nervosa/purging type (BN-P = 40). The control group consisted of 140 subjects. The assessment measures were the Minnesota Multiphasic Personality Inventory-second version (MMPI-2) scales and subscales, the Beck Depression Inventory (BDI) used to control for current depressive symptoms, plus a specific questionnaire concerning suicide attempts. RESULTS: - Suicide attempts were most frequent in subjects with purging behaviour (30.0% for BN-P and 29.7% for AN-P). Those attempting suicide among subjects with eating disorders were mostly students (67.8%). For women with AN-R the scales for 'Depression' and 'Antisocial practices' represented significant suicidal risk, for women with AN-P the scales for 'Hysteria', 'Psychopathic deviate', 'Shyness/Self-consciousness', 'Antisocial Practices', 'Obsessiveness' and 'Low self-esteem' were risk indicators and for women with BN-P the 'Psychasthenia', 'Anger' and 'Fears' scales were risk indicators. CONCLUSION: - This study provides interesting results concerning the personality traits of young women with both eating disorders and suicidal behaviour. Students and those with purging behaviour are most at risk. Young women should be given more attention with regard to the risk of suicide attempts if they: (a). have AN-R with a tendency to self-punishment and antisocial conduct, (b). have AN-P with multiple physical complaints, are not at ease in social situations and have antisocial behaviour, or (c). if they have BN-P and tend to be easily angered with obsessive behaviour and phobic worries. The MMPI-2 is an interesting assessment method for the study of traits indicating a risk of suicidal behaviour in young subjects, after controlling for current depressive pathology.
Resumo:
A cornerstone result of sociobiology states that limited dispersal can induce kin competition to offset the kin selected benefits of altruism. Several mechanisms have been proposed to circumvent this dilemma but all assume that actors and recipients of altruism interact during the same time period. Here, this assumption is relaxed and a model is developed where individuals express an altruistic act, which results in posthumously helping relatives living in the future. The analysis of this model suggests that kin selected benefits can then feedback on the evolution of the trait in a way that promotes altruistic helping at high rates under limited dispersal. The decoupling of kin competition and kin selected benefits results from the fact that by helping relatives living in the future, an actor is helping individuals that are not in direct competition with itself. A direct consequence is that behaviours which actors gain by reducing the common good of present and future generations can be opposed by kin selection. The present model integrates niche-constructing traits with kin selection theory and delineates demographic and ecological conditions under which altruism can be selected for; and conditions where the 'tragedy of the commons' can be reduced.
Resumo:
Reproductive division of labor and the coexistence of distinct castes are hallmarks of insect societies. In social insect species with multiple queens per colony, the fitness of nestmate queens directly depends on the process of caste allocation (i.e., the relative investment in queen, sterile worker and male production). The aim of this study is to investigate the genetic components to the process of caste allocation in a multiple-queen ant species. We conducted controlled crosses in the Argentine ant Linepithema humile and established single-queen colonies to identify maternal and paternal family effects on the relative production of new queens, workers, and males. There were significant effects of parental genetic backgrounds on various aspects of caste allocation: the paternal lineage affected the proportion of queens and workers produced whereas the proportions of queens and males, and females and males were influenced by the interaction between parental lineages. In addition to revealing nonadditive genetic effects on female caste determination in a multiple-queen ant species, this study reveals strong genetic compatibility effects between parental genomes on caste allocation components.
Resumo:
Maternal effects often affect fitness traits, but there is little experimental evidence pertaining to their contribution to response to selection imposed by novel environments. We studied the evolution of maternal effects in Drosophila populations selected for tolerance to chronic larval malnutrition. To this end, we performed pairwise reciprocal F1 crosses between six selected (malnutrition tolerant) populations and six unselected control populations and assessed the effect of cross direction on larval growth and developmental rate, adult weight and egg-to-adult viability expressed under the malnutrition regime. Each pair of reciprocal crosses revealed large maternal effects (possibly including cytoplasmic genetic effects) on at least one trait, but the magnitude, sign and which traits were affected varied among populations. Thus, maternal effects contributed significantly to the response to selection imposed by the malnutrition regime, but these changes were idiosyncratic, suggesting a rugged adaptive landscape. Furthermore, although the selected populations evolved both faster growth and higher viability, the maternal effects on growth rate and viability were negatively correlated across populations. Thus, genes mediating maternal effects can evolve to partially counteract the response to selection mediated by the effects of alleles on their own carriers' phenotype, and maternal effects may contribute to evolutionary trade-offs between components of offspring fitness.
Resumo:
Colonization is likely to be more successful for species with an ability to self-fertilize and thus to establish new populations as single individuals. As a result, self-compatibility should be common among colonizing species. This idea, labelled 'Baker's law', has been influential in discussions of sexual-system and mating-system evolution. However, its generality has been questioned, because models of the evolution of dispersal and the mating system predict an association between high dispersal rates and outcrossing rather than selfing, and because of many apparent counter examples to the law. The contrasting predictions made by models invoking Baker's law versus those for the evolution of the mating system and dispersal urges a reassessment of how we should view both these traits. Here, I review the literature on the evolution of mating and dispersal in colonizing species, with a focus on conceptual issues. I argue for the importance of distinguishing between the selfing or outcrossing rate and a simple ability to self-fertilize, as well as for the need for a more nuanced consideration of dispersal. Colonizing species will be characterized by different phases in their life pattern: dispersal to new habitat, implying an ecological sieve on dispersal traits; establishment and a phase of growth following colonization, implying a sieve on reproductive traits; and a phase of demographic stasis at high density, during which new trait associations can evolve through local adaptation. This dynamic means that the sorting of mating-system and dispersal traits should change over time, making simple predictions difficult.
Resumo:
Alternative splicing produces multiple isoforms from the same gene, thus increasing the number of transcripts of the species. Alternative splicing is a virtually ubiquitous mechanism in eukaryotes, for example more than 90% of protein-coding genes in human are alternatively spliced. Recent evolutionary studies showed that alternative splicing is a fast evolving and highly species- specific mechanism. The rapid evolution of alternative splicing was considered as a contribution to the phenotypic diversity between species. However, the function of many isoforms produced by alternative splicing remains unclear and they might be the result of noisy splicing. Thus, the functional relevance of alternative splicing and the evolutionary mechanisms of its rapid divergence among species are still poorly understood. During my thesis, I performed a large-scale analysis of the regulatory mechanisms that drive the rapid evolution of alternative splicing. To study the evolution of alternative splicing regulatory mechanisms, I used an extensive RNA-sequencing dataset comprising 12 tetrapod species (human, chimpanzee and bonobo, gorilla, orangutan, macaque, marmoset, mouse, opossum, platypus, chicken and frog) and 8 tissues (cerebellum, brain, heart, kidney, liver, testis, placenta and ovary). To identify the catalogue of alternative splicing eis-acting regulatory elements in the different tetrapod species, I used a previously defined computational approach. This approach is a statistical analysis of exons/introns and splice sites composition and relies on a principle of compensation between splice sites strength and the presence of additional regulators. With an evolutionary comparative analysis of the exonic eis-acting regulators, I showed that these regulatory elements are generally shared among primates and more conserved than non-regulatory elements. In addition, I showed that the usage of these regulatory elements is also more conserved than expected by chance. In addition to the identification of species- specific eis-acting regulators, these results may explain the rapid evolution of alternative splicing. I also developed a new approach based on evolutionary sequence changes and corresponding alternative splicing changes to identify potential splicing eis-acting regulators in primates. The identification of lineage-specific substitutions and corresponding lineage-specific alternative splicing changes, allowed me to annotate the genomic sequences that might have played a role in the alternative splicing pattern differences among primates. Finally, I showed that the identified splicing eis-acting regulator datasets are enriched in human disease-causing mutations, thus confirming their biological relevance.