972 resultados para Multi-layer Perceptron


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study aims to assess the performance or multi-layer canopy parameterizations implemented in the mesoscale WRF model in order to understand their potential contribution to improve the description of energy fluxes and wind fields in the Madrid city. It was found that the Building Energy Model (BEP+BEM) parameterization yielded better results than the bulk standard scheme implemented in the Noah LSM, but very close to those of the Building Energy Parameterization (BEP). The later was deemed as the best option since data requirements and CPU time were smaller. Two annual runs were made to feed the CMAQ chemical-transport model to assess the impact of this feature in routinely air quality modelling activities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Los Centros de Datos se encuentran actualmente en cualquier sector de la economía mundial. Están compuestos por miles de servidores, dando servicio a los usuarios de forma global, las 24 horas del día y los 365 días del año. Durante los últimos años, las aplicaciones del ámbito de la e-Ciencia, como la e-Salud o las Ciudades Inteligentes han experimentado un desarrollo muy significativo. La necesidad de manejar de forma eficiente las necesidades de cómputo de aplicaciones de nueva generación, junto con la creciente demanda de recursos en aplicaciones tradicionales, han facilitado el rápido crecimiento y la proliferación de los Centros de Datos. El principal inconveniente de este aumento de capacidad ha sido el rápido y dramático incremento del consumo energético de estas infraestructuras. En 2010, la factura eléctrica de los Centros de Datos representaba el 1.3% del consumo eléctrico mundial. Sólo en el año 2012, el consumo de potencia de los Centros de Datos creció un 63%, alcanzando los 38GW. En 2013 se estimó un crecimiento de otro 17%, hasta llegar a los 43GW. Además, los Centros de Datos son responsables de más del 2% del total de emisiones de dióxido de carbono a la atmósfera. Esta tesis doctoral se enfrenta al problema energético proponiendo técnicas proactivas y reactivas conscientes de la temperatura y de la energía, que contribuyen a tener Centros de Datos más eficientes. Este trabajo desarrolla modelos de energía y utiliza el conocimiento sobre la demanda energética de la carga de trabajo a ejecutar y de los recursos de computación y refrigeración del Centro de Datos para optimizar el consumo. Además, los Centros de Datos son considerados como un elemento crucial dentro del marco de la aplicación ejecutada, optimizando no sólo el consumo del Centro de Datos sino el consumo energético global de la aplicación. Los principales componentes del consumo en los Centros de Datos son la potencia de computación utilizada por los equipos de IT, y la refrigeración necesaria para mantener los servidores dentro de un rango de temperatura de trabajo que asegure su correcto funcionamiento. Debido a la relación cúbica entre la velocidad de los ventiladores y el consumo de los mismos, las soluciones basadas en el sobre-aprovisionamiento de aire frío al servidor generalmente tienen como resultado ineficiencias energéticas. Por otro lado, temperaturas más elevadas en el procesador llevan a un consumo de fugas mayor, debido a la relación exponencial del consumo de fugas con la temperatura. Además, las características de la carga de trabajo y las políticas de asignación de recursos tienen un impacto importante en los balances entre corriente de fugas y consumo de refrigeración. La primera gran contribución de este trabajo es el desarrollo de modelos de potencia y temperatura que permiten describes estos balances entre corriente de fugas y refrigeración; así como la propuesta de estrategias para minimizar el consumo del servidor por medio de la asignación conjunta de refrigeración y carga desde una perspectiva multivariable. Cuando escalamos a nivel del Centro de Datos, observamos un comportamiento similar en términos del balance entre corrientes de fugas y refrigeración. Conforme aumenta la temperatura de la sala, mejora la eficiencia de la refrigeración. Sin embargo, este incremente de la temperatura de sala provoca un aumento en la temperatura de la CPU y, por tanto, también del consumo de fugas. Además, la dinámica de la sala tiene un comportamiento muy desigual, no equilibrado, debido a la asignación de carga y a la heterogeneidad en el equipamiento de IT. La segunda contribución de esta tesis es la propuesta de técnicas de asigación conscientes de la temperatura y heterogeneidad que permiten optimizar conjuntamente la asignación de tareas y refrigeración a los servidores. Estas estrategias necesitan estar respaldadas por modelos flexibles, que puedan trabajar en tiempo real, para describir el sistema desde un nivel de abstracción alto. Dentro del ámbito de las aplicaciones de nueva generación, las decisiones tomadas en el nivel de aplicación pueden tener un impacto dramático en el consumo energético de niveles de abstracción menores, como por ejemplo, en el Centro de Datos. Es importante considerar las relaciones entre todos los agentes computacionales implicados en el problema, de forma que puedan cooperar para conseguir el objetivo común de reducir el coste energético global del sistema. La tercera contribución de esta tesis es el desarrollo de optimizaciones energéticas para la aplicación global por medio de la evaluación de los costes de ejecutar parte del procesado necesario en otros niveles de abstracción, que van desde los nodos hasta el Centro de Datos, por medio de técnicas de balanceo de carga. Como resumen, el trabajo presentado en esta tesis lleva a cabo contribuciones en el modelado y optimización consciente del consumo por fugas y la refrigeración de servidores; el modelado de los Centros de Datos y el desarrollo de políticas de asignación conscientes de la heterogeneidad; y desarrolla mecanismos para la optimización energética de aplicaciones de nueva generación desde varios niveles de abstracción. ABSTRACT Data centers are easily found in every sector of the worldwide economy. They consist of tens of thousands of servers, serving millions of users globally and 24-7. In the last years, e-Science applications such e-Health or Smart Cities have experienced a significant development. The need to deal efficiently with the computational needs of next-generation applications together with the increasing demand for higher resources in traditional applications has facilitated the rapid proliferation and growing of data centers. A drawback to this capacity growth has been the rapid increase of the energy consumption of these facilities. In 2010, data center electricity represented 1.3% of all the electricity use in the world. In year 2012 alone, global data center power demand grew 63% to 38GW. A further rise of 17% to 43GW was estimated in 2013. Moreover, data centers are responsible for more than 2% of total carbon dioxide emissions. This PhD Thesis addresses the energy challenge by proposing proactive and reactive thermal and energy-aware optimization techniques that contribute to place data centers on a more scalable curve. This work develops energy models and uses the knowledge about the energy demand of the workload to be executed and the computational and cooling resources available at data center to optimize energy consumption. Moreover, data centers are considered as a crucial element within their application framework, optimizing not only the energy consumption of the facility, but the global energy consumption of the application. The main contributors to the energy consumption in a data center are the computing power drawn by IT equipment and the cooling power needed to keep the servers within a certain temperature range that ensures safe operation. Because of the cubic relation of fan power with fan speed, solutions based on over-provisioning cold air into the server usually lead to inefficiencies. On the other hand, higher chip temperatures lead to higher leakage power because of the exponential dependence of leakage on temperature. Moreover, workload characteristics as well as allocation policies also have an important impact on the leakage-cooling tradeoffs. The first key contribution of this work is the development of power and temperature models that accurately describe the leakage-cooling tradeoffs at the server level, and the proposal of strategies to minimize server energy via joint cooling and workload management from a multivariate perspective. When scaling to the data center level, a similar behavior in terms of leakage-temperature tradeoffs can be observed. As room temperature raises, the efficiency of data room cooling units improves. However, as we increase room temperature, CPU temperature raises and so does leakage power. Moreover, the thermal dynamics of a data room exhibit unbalanced patterns due to both the workload allocation and the heterogeneity of computing equipment. The second main contribution is the proposal of thermal- and heterogeneity-aware workload management techniques that jointly optimize the allocation of computation and cooling to servers. These strategies need to be backed up by flexible room level models, able to work on runtime, that describe the system from a high level perspective. Within the framework of next-generation applications, decisions taken at this scope can have a dramatical impact on the energy consumption of lower abstraction levels, i.e. the data center facility. It is important to consider the relationships between all the computational agents involved in the problem, so that they can cooperate to achieve the common goal of reducing energy in the overall system. The third main contribution is the energy optimization of the overall application by evaluating the energy costs of performing part of the processing in any of the different abstraction layers, from the node to the data center, via workload management and off-loading techniques. In summary, the work presented in this PhD Thesis, makes contributions on leakage and cooling aware server modeling and optimization, data center thermal modeling and heterogeneityaware data center resource allocation, and develops mechanisms for the energy optimization for next-generation applications from a multi-layer perspective.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A finales del siglo XIX y principios del XX, la aparición de nuevos materiales, como el acero y el hormigón armado, y la experimentación en procedimientos industriales provocan un cambio en el concepto de cerramiento y en la forma de construir. La fachada se libera y se independiza de la estructura principal, y el nuevo cerramiento debe responder a los principios arquitectónicos y constructivos de este momento. Se busca, por tanto, un cerramiento nuevo. Un cerramiento ligero, de poco peso, de poco espesor, autoportante, multicapa, montado en seco, de grandes dimensiones y que cumpla las exigencias de todo cerramiento. Se puede afirmar que, hasta que Jean Prouvé experimenta con distintos materiales y sistemas de fabricación, la técnica de los cerramientos ligeros no se desarrolla por completo. En sus trabajos se pueden encontrar aplicaciones de los nuevos materiales y nuevas técnicas, e investigaciones sobre prefabricación ligera en acero y aluminio, en un intento de aplicar la producción industrial y en serie a la construcción. Esta Tesis realiza un análisis en profundidad, tanto gráfico como escrito, de los cerramientos verticales desarrollados por Jean Prouvé, sin tratarlos como objetos aislados, entendiendo que forman parte de una obra arquitectónica concreta y completa. Dicho análisis sirve para clasificarlos según las funciones esenciales que debe garantizar un cerramiento: aislar, iluminar, ventilar y proteger, y para comprender cuáles son las claves, los recursos e intenciones, utilizadas por el autor para conseguir este propósito. El resultado de la investigación se plasma de dos formas diferentes. En la primera, se realizan reflexiones críticas para extraer los temas importantes de los elementos analizados, lo que posibilita el acercamiento a otros arquitectos y ampliar el campo de visión. En la segunda, de tipo gráfico, se elabora un atlas de los distintos tipos de cerramientos verticales desarrollados por Jean Prouvé. ABSTRACT In the late nineteenth and the early twentieth century, the appearance of new materials, like steel or reinforced concrete, and the experimentation in industrial procedures cause a change in the concept of façade and in the way of build. The façade is released and become independent of the main structural frame, and the new building enclosure must answer the architectural and construction principles of that moment. A new façade is therefore looked for. A light, thin, self supported, multi layer, dry mounted and big dimensions façade that meet the exigencies of all building enclosure. You can ensure that until Jean Prouvé experiment with several materials and fabrication systems, the light façade technic does not develop completely. In his work we can find new materials applications and new technics and studies about light prefabrication with steel and aluminium, in an attempt of apply the mass production to construction. This Thesis carries out a deep analysis, graphic and written, of the vertical enclosure panels of Jean Prouvé’s work. This is made without studying them like isolated objects, but understanding that they are part of a particular architectural work, as a whole. The analysis is used for classify the panels according to main functions that a façade must satisfy: isolate, light up, ventilate and protect. And also to understand which are the keys, the resources and intentions used by Prouvé to achieve this goal. The result of the research is presented in two different ways. In the first one, a critical reflection is made in order to extract the important issues of the analyzed elements. That makes possible the approach to other architects and gives us a bigger range of vision. In the second, graphic, an atlas of the different types of vertical façade panels of Jean Prouvé is made.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a new approach accounting for the nonadditivity of attractive parts of solid-fluid and fluidfluid potentials to improve the quality of the description of nitrogen and argon adsorption isotherms on graphitized carbon black in the framework of non-local density functional theory. We show that the strong solid-fluid interaction in the first monolayer decreases the fluid-fluid interaction, which prevents the twodimensional phase transition to occur. This results in smoother isotherm, which agrees much better with experimental data. In the region of multi-layer coverage the conventional non-local density functional theory and grand canonical Monte Carlo simulations are known to over-predict the amount adsorbed against experimental isotherms. Accounting for the non-additivity factor decreases the solid-fluid interaction with the increase of intermolecular interactions in the dense adsorbed fluid, preventing the over-prediction of loading in the region of multi-layer adsorption. Such an improvement of the non-local density functional theory allows us to describe experimental nitrogen and argon isotherms on carbon black quite accurately with mean error of 2.5 to 5.8% instead of 17 to 26% in the conventional technique. With this approach, the local isotherms of model pores can be derived, and consequently a more reliab * le pore size distribution can be obtained. We illustrate this by applying our theory against nitrogen and argon isotherms on a number of activated carbons. The fitting between our model and the data is much better than the conventional NLDFT, suggesting the more reliable PSD obtained with our approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a composite multi-layer classifier system for predicting the subcellular localization of proteins based on their amino acid sequence. The work is an extension of our previous predictor PProwler v1.1 which is itself built upon the series of predictors SignalP and TargetP. In this study we outline experiments conducted to improve the classifier design. The major improvement came from using Support Vector machines as a "smart gate" sorting the outputs of several different targeting peptide detection networks. Our final model (PProwler v1.2) gives MCC values of 0.873 for non-plant and 0.849 for plant proteins. The model improves upon the accuracy of our previous subcellular localization predictor (PProwler v1.1) by 2% for plant data (which represents 7.5% improvement upon TargetP).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fast Classification (FC) networks were inspired by a biologically plausible mechanism for short term memory where learning occurs instantaneously. Both weights and the topology for an FC network are mapped directly from the training samples by using a prescriptive training scheme. Only two presentations of the training data are required to train an FC network. Compared with iterative learning algorithms such as Back-propagation (which may require many hundreds of presentations of the training data), the training of FC networks is extremely fast and learning convergence is always guaranteed. Thus FC networks may be suitable for applications where real-time classification is needed. In this paper, the FC networks are applied for the real-time extraction of gene expressions for Chlamydia microarray data. Both the classification performance and learning time of the FC networks are compared with the Multi-Layer Proceptron (MLP) networks and support-vector-machines (SVM) in the same classification task. The FC networks are shown to have extremely fast learning time and comparable classification accuracy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We complement recent advances in thermodynamic limit analyses of mean on-line gradient descent learning dynamics in multi-layer networks by calculating fluctuations possessed by finite dimensional systems. Fluctuations from the mean dynamics are largest at the onset of specialisation as student hidden unit weight vectors begin to imitate specific teacher vectors, increasing with the degree of symmetry of the initial conditions. In light of this, we include a term to stimulate asymmetry in the learning process, which typically also leads to a significant decrease in training time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Radial Basis Function networks with linear outputs are often used in regression problems because they can be substantially faster to train than Multi-layer Perceptrons. For classification problems, the use of linear outputs is less appropriate as the outputs are not guaranteed to represent probabilities. We show how RBFs with logistic and softmax outputs can be trained efficiently using the Fisher scoring algorithm. This approach can be used with any model which consists of a generalised linear output function applied to a model which is linear in its parameters. We compare this approach with standard non-linear optimisation algorithms on a number of datasets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We analyse the dynamics of a number of second order on-line learning algorithms training multi-layer neural networks, using the methods of statistical mechanics. We first consider on-line Newton's method, which is known to provide optimal asymptotic performance. We determine the asymptotic generalization error decay for a soft committee machine, which is shown to compare favourably with the result for standard gradient descent. Matrix momentum provides a practical approximation to this method by allowing an efficient inversion of the Hessian. We consider an idealized matrix momentum algorithm which requires access to the Hessian and find close correspondence with the dynamics of on-line Newton's method. In practice, the Hessian will not be known on-line and we therefore consider matrix momentum using a single example approximation to the Hessian. In this case good asymptotic performance may still be achieved, but the algorithm is now sensitive to parameter choice because of noise in the Hessian estimate. On-line Newton's method is not appropriate during the transient learning phase, since a suboptimal unstable fixed point of the gradient descent dynamics becomes stable for this algorithm. A principled alternative is to use Amari's natural gradient learning algorithm and we show how this method provides a significant reduction in learning time when compared to gradient descent, while retaining the asymptotic performance of on-line Newton's method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Radial Basis Function networks with linear outputs are often used in regression problems because they can be substantially faster to train than Multi-layer Perceptrons. For classification problems, the use of linear outputs is less appropriate as the outputs are not guaranteed to represent probabilities. In this paper we show how RBFs with logistic and softmax outputs can be trained efficiently using algorithms derived from Generalised Linear Models. This approach is compared with standard non-linear optimisation algorithms on a number of datasets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a novel methodology to infer parameters of probabilistic models whose output noise is a Student-t distribution. The method is an extension of earlier work for models that are linear in parameters to nonlinear multi-layer perceptrons (MLPs). We used an EM algorithm combined with variational approximation, the evidence procedure, and an optimisation algorithm. The technique was tested on two regression applications. The first one is a synthetic dataset and the second is gas forward contract prices data from the UK energy market. The results showed that forecasting accuracy is significantly improved by using Student-t noise models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A number of researchers have investigated the application of neural networks to visual recognition, with much of the emphasis placed on exploiting the network's ability to generalise. However, despite the benefits of such an approach it is not at all obvious how networks can be developed which are capable of recognising objects subject to changes in rotation, translation and viewpoint. In this study, we suggest that a possible solution to this problem can be found by studying aspects of visual psychology and in particular, perceptual organisation. For example, it appears that grouping together lines based upon perceptually significant features can facilitate viewpoint independent recognition. The work presented here identifies simple grouping measures based on parallelism and connectivity and shows how it is possible to train multi-layer perceptrons (MLPs) to detect and determine the perceptual significance of any group presented. In this way, it is shown how MLPs which are trained via backpropagation to perform individual grouping tasks, can be brought together into a novel, large scale network capable of determining the perceptual significance of the whole input pattern. Finally the applicability of such significance values for recognition is investigated and results indicate that both the NILP and the Kohonen Feature Map can be trained to recognise simple shapes described in terms of perceptual significances. This study has also provided an opportunity to investigate aspects of the backpropagation algorithm, particularly the ability to generalise. In this study we report the results of various generalisation tests. In applying the backpropagation algorithm to certain problems, we found that there was a deficiency in performance with the standard learning algorithm. An improvement in performance could however, be obtained when suitable modifications were made to the algorithm. The modifications and consequent results are reported here.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There are been a resurgence of interest in the neural networks field in recent years, provoked in part by the discovery of the properties of multi-layer networks. This interest has in turn raised questions about the possibility of making neural network behaviour more adaptive by automating some of the processes involved. Prior to these particular questions, the process of determining the parameters and network architecture required to solve a given problem had been a time consuming activity. A number of researchers have attempted to address these issues by automating these processes, concentrating in particular on the dynamic selection of an appropriate network architecture.The work presented here specifically explores the area of automatic architecture selection; it focuses upon the design and implementation of a dynamic algorithm based on the Back-Propagation learning algorithm. The algorithm constructs a single hidden layer as the learning process proceeds using individual pattern error as the basis of unit insertion. This algorithm is applied to several problems of differing type and complexity and is found to produce near minimal architectures that are shown to have a high level of generalisation ability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An initial aim of this project was to evaluate the conventional techniques used in the analysis of newly prepared environmentally friendly water-borne automotive coatings and compare them with solvent-borne coatings having comparable formulations. The investigation was carried out on microtuned layers as well as on complete automotive multi-layer paint systems. Methods used included the very traditional methods of gloss and hardness and the commonly used photo-oxidation index (from FTIR spectral analysis). All methods enabled the durability to weathering of the automotive coatings to be initially investigated. However, a primary aim of this work was to develop methods for analysing the early stages of chemical and property changes in both the solvent-borne and water-borne coating systems that take place during outdoor natural weathering exposures and under accelerated artificial exposures. This was achieved by using dynamic mechanical analysis (DMA), in both tension mode on the microtomed films (on all depths of the coating systems from the uppermost clear-coat right down to the electron-coat) and bending mode of the full (unmicrotomed) systems, as well as MALDI-Tof analysis on the movement of the stabilisers in the full systems. Changes in glass transition temperature and relative cross-link density were determined after weathering and these were related to changes in the chemistries of the binder systems of the coatings after weathering. Concentration profiles of the UV-stabilisers (UVA and HALS) in the coating systems were analysed as a consequence of migration in the coating systems in separate microtomed layers of the paint samples (depth profiling) after weathering and diffusion co-efficient and solubility parameters were determined for the UV stabilisers in the coating systems. The methods developed were used to determine the various physical and chemical changes that take place during weathering of the different (water-borne and solvent-borne) systems (photoxidation). The solvent-borne formulations showed less changes after weathering (both natural and accelerated) than the corresponding water-borne formulations due to the lower level of cross-links in the binders of the water-borne systems. The silver systems examined were more durable than the blue systems due to the reflecting power of the aluminium and the lower temperature of the silver coatings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper aims to identify the communication goal(s) of a user's information-seeking query out of a finite set of within-domain goals in natural language queries. It proposes using Tree-Augmented Naive Bayes networks (TANs) for goal detection. The problem is formulated as N binary decisions, and each is performed by a TAN. Comparative study has been carried out to compare the performance with Naive Bayes, fully-connected TANs, and multi-layer neural networks. Experimental results show that TANs consistently give better results when tested on the ATIS and DARPA Communicator corpora.