1000 resultados para Ms. Hakakian
Resumo:
A pre-column derivatization method for the sensitive determination of amines using a labeling reagent 2-(11H-benzo[a]-carbazol-11-yl) ethyl chloroformate (BCEC-Cl) followed by high-performance, liquid chromatography with fluorescence detection has been developed. Identification of derivatives was carried out by LC/APCI/MS in positive-ion mode. The chromophore of 1,2-benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC-Cl) reagent was replaced by 2-(11H-benzo[a]-carbazol-11-yl) ethyl functional group, which resulted in a sensitive fluorescence derivatizing reagent BCEC-Cl. BCEC-Cl could easily and quickly label amines. Derivatives were stable enough to be efficiently analyzed by HPLC and showed an intense protonated molecular ion corresponding m/z [M+ H](+) under APCI/MS in positive-ion mode. The collision-induced dissociation of the protonated molecular ion formed characteristic fragment ions at m/z 261.8 and m/z 243.8 corresponding to the cleavages of CH2O-CO and CH2-OCO bonds. Studies on derivatization demonstrated excellent derivative yields over the pH 9.0-10.0. Maximal yields close to 100% were observed with three- to four-fold molar reagent excess. In addition, the detection responses for BCEC-derivatives were compared to those obtained using 1,2-benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC-Cl) and 9-fluorenyl methylchloroformate, (FMOC-Cl) as labeling reagents. The ratios I-BCEC/I-BCEOC = 1.94-2.17 and I-BCEC/I-FMOC = 1.04-2.19 for fluorescent (FL) responses (here, I was relative fluorescence intensity). Separation of the derivatized amines had been optimized on reversed-phase Eclipse XDB-C-8 column. Detection limits calculated from 0.50 pmol injection, at a signal-to-noise ratio of 3, were 1.77-14.4 fmol. The relative standard deviations for within-day determination (n = 11) were 1.84-2.89% for the tested amines. The mean intra- and inter-assay precision for all amines levels were < 3.64% and 2.52%, respectively. The mean recoveries ranged from 96.6% to 107.1% with their standard deviations in the range of 0.8-2.7. Excellent linear responses were observed with coefficients of > 0.9996. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
A sensitive method for the determination of 30 kinds of free fatty acids (FFAs, C-1-C-30) with 1-[2-(p-toluenesulfonate)-ethyl]-2-phenylimidazole-[4,5-f] 9,10-phenan- threne (TSPP) as labeling reagent and using high performance liquid chromatography with fluorescence detection and identification by online postcolumn mass spectrometry with atmospheric pressure chemical ionization (APCI) source in positive-ion mode (HPLC/MS/APCI) has been developed. TSPP could easily and quickly label FFAs in the presence of K2CO3 catalyst at 90 degrees C for 30 min in N,N-dimethylformamide (DMF) solvent, and maximal labeling yields close to 100% were observed with a 5-fold excess of molar reagent. Derivatives were stable enough to be efficiently analyzed by high performance liquid chromatography. TSPP was introduced into fatty acid molecules and effectively augmented MS ionization of fatty acid derivatives and led to regular MS and MS/MS information. The collision induced cleavage of protonated molecular ions formed specific fragment ions at m/z [MH](+)(molecular ion), m/z [M'+CH2CH2](+)(M' was molecular mass of the corresponding FFA) and m/z 295.0 (the, mass of protonated molecular core structure of TSPP). Fatty acid derivatives were separated on a reversed-phase Eclipse XDB-C-8 column (4.6 x 150 mm, 5 mu m, Agilent) with a good baseline resolution in combination with a gradient elution. Linear ranges of 30 FFAs are 2.441 x 10(-3) to 20 mu mol/L, detection limits are 3.24 similar to 36.97 fmol (injection volume 10 mu L, at a signal-to-noise ratio of 3, S/N 3:1). The mean interday precision ranged from 93.4 to 106.2% with the largest mean coefficients of variation (R.S.D.) < 7,5%. The mean intraday precision for all standards was < 6.4% of the expected concentration. Excellent linear responses were observed with correlation coefficients of > 0.9991. Good compositional data could be obtained from the analysis of extracted fatty acids from as little as 200 mg of bryophyte plant samples.Therefore, the facile TSPP derivatization coupled with HPLC/MS/APCI analysis allowed the development of a highly sensitive method for the quantitation of trace levels of short and long chain fatty acids from biological and natural environmental samples.
Resumo:
A sensitive method for the determination of long-chain fatty acids (LCFAs) (>C20) using 1-[2-(p-toluenesulfonate)-ethyl]-2-phenylimidazole-[4.5-f]-9,10-phenanthrene (TSPP) as tagging reagent with fluorescence detection and identification with post-column APCI/MS has been developed. The LCFAs in bryophyte plant samples were obtained based on distillation extraction with 1: 1 (v/v) chloroform/methanol as extracting solvent. TSPP could easily and quickly label LCFAs at 90 degrees C in the presence of K2CO3 catalyst in DMF. Eleven free LCFAs from the extracts of bryophyte plants were sensitively determined. Maximal labeling yields close to 100% were observed with a five-fold excess of molar reagent. Separation of the derivatized fatty acids exhibited a good baseline resolution in combination with a gradient elution on a reversed-phase Eclipse XDB-C-8 column. Calculated detection limits from 1.0 pmol injection, at a signal-to-noise ratio of 3, were 26.19-76.67 fmol. Excellent linear responses were observed with coefficients of >0.9996. Good compositional data were obtained from the analysis of the extracted LCFAs containing as little as 0.2 g of bryophyte plant samples. Therefore, the facile TSPP derivatization coupled with HPLC/APCI/MS analysis allowed the development of a highly sensitive method for the quantitation of trace levels of LCFAs from biological and natural environmental samples. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
This paper describes the simultaneous determination of allantoin, quercetin, and 1-methyl-1,2,3,4-tetrahydro-beta-carboline-3-carboxylic acid (MTCCA) in Nitraria tangutorum Bobr seed by HPLC-APCI-MS and CE (capillary electrophoresis) methods. The final optimized chromatographic conditions were investigated in a reversed-phase Eclipse XDB-C8 column (150 x 4.6 mm, 5 mu m). A seventeen-minute gradient elution, (A: aqueous acetonitrile 20% (v/v); B: aqueous acetonitrile 60% (v/v); C: pure acetonitrile 100%) at a flow rate of 1.0 mL/min was selected for the separation of three natural products with diode array detection (DAD) at 220 nm. A CE experiment was carried out in a fused silica capillary with 32 mmol/L boric acid (pH 10), 32 mmol/L SDS and acetonitrile (10.0%, v/v). The applied potential and temperature was, respectively, set at 19 kV and 25 degrees C. After development, the validation was performed in parallel for HPLC and CE, with the same standards and sample to avoid differences due to the manipulation. The validation parameters of both techniques were adequate for the intended purpose.
Resumo:
A simple and sensitive method for the determination of free fatty acids (FFAs) using acridone-9-ethyl-p-toluenesulfonate (AETS) as a fluorescence derivatization reagent by high performance liquid chromatography (HPLC) has been developed. Free fatty acid derivatives were separated on an Eclipse XDB-C-8 column with a good baseline resolution and detected with the fluorescence of which excitation and emission wavelengths of derivatives were set at lambda(ex) 404 and lambda(em) 440 nm, respectively. Identification of 19 fatty acid derivatives was carried out by online post-column mass spectrometry with an atmospheric pressure chemical ionization (APCI) source under positive-ion detection mode. Nineteen FFAs from the extract of Lomatogonium rotatum are sensitively determined. The results indicate that the plant Lomatogonium rotatum is enriched with an abundance of FFAs and FFAs of higher contents, which mainly focus on even carbon atoms, C-14, C-16, and C-18. The validation of the method including linearity, repeatability, and detection limits was examined. Most linear correlation coefficients for fatty acid derivatives are > 0.9989, and detection limits (at signal-to-noise of 3: 1) are 12.3-43.7 fmol. The relative standard deviations (RSDs) of the peak areas and retention times for 19 FFAs standards are < 2.24% and 0.45%, respectively. The established method is rapid and reproducible for the separation determination of FFAs from the extract of Lomatogonium rotatum with satisfactory results.
Resumo:
A pre-column derivatization method for the sensitive determination of amines using the labeling reagent 1,2-benzo-3,4-dihydrocarbazole-9-isopropyl chloroformate (BCIC-Cl) followed by high-performance liquid chromatography with fluorescence detection has been developed. Identification of derivatives is carried out by high performance liquid chromatography/atmospheric pressure chemical ionization (LC-APCl-MS-MS). The chromophore of 2-(9-carbazole)-ethyl chloroformate (CEOC) reagent is replaced by 1,2-benzo-3,4-dihydrocarbazole-9-isopropyl functional group, which results in a sensitive fluorescence derivatizing reagent BCIC-Cl. BCIC-Cl can easily and quickly label amines. Derivatives are stable enough to be efficiently analyzed by high-performance liquid chromatography and show an intense protonated molecular ion corresponding m/z [MH](+) under APCl in positive-ion mode. The collision-induced dissociation of protonated molecular ion formed a product at m/z 260 corresponding to the cleavage of CH2-OCO bond. Studies on derivatization demonstrate excellent derivative yields over the pH 9.0-10.0. Maximal yields close to 100% are observed with a 3 to 4-fold molar reagent excess. In addition, the detection responses for BCIC derivatives are compared with those obtained using CEOC and FMOC as derivatization reagents. The ratios of l(BCIC)/l(CEOC) and l(BCIC)/l(FMOC) are, respectively, 1.23-3.14 and 1.25-3.08 for fluorescent (FL) responses (here, l is relative fluorescence intensity). Separation of the derivatized amines had been optimized on reversed-phase Eclipse XDB-C-8 column. Detection limits are calculated from 1.0 pmol injection, at a signal-to-noise ratio of 3, are 10.6-37.8 fmol. The mean interday accuracy ranges from 94 to 105% for fluorescence detection with the largest mean %CV < 7.5. The mean interday precision for all standards is < 6.0% of the expected concentration. Excellent linear responses are observed with coefficients of > 0.9997.
Resumo:
A rapid and sensitive liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (HPLC-APCI-MS) assay for the determination of five pharmacologically active compounds (PAC) extracted from the traditional Chinese medicine, Rhodiola , namely salidroside, tyrosol, rhodionin, gallic acid, and ethyl gallate has been developed. In this method, PAC could be baseline separated and detected with DAD at 275 nm. The validation of the method, including sensitivity, linearity, repeatability, and recovery, was examined. The linear calibration curves were acquired with correlation coefficient >0.999 and the limits of detection LOD (at a signal-to-noise ratio=3:1) were between 0.058 and 1.500 mu mol/L. It was found, that the amounts of PAC varied with different species of Rhodiola . The established method is rapid and reproducible for the separation of five natural pharmacologically active compounds from extracts of Rhodiola with satisfactory results.
Resumo:
Based on previous studies, boron can be separated from aqueous samples with Amberlite IRA-743 resin. Experiments on the elute temperature, elute volume and the dynamic resin exchange capacity have been performed in this study. Results show that the dynamic exchange capacity of the resin is 4.2mg B/g and at room temperature, boron fixed on the resin within this capacity level can be extracted quantitatively by using 5ml 2%HNO3. A new procedure has been developed for the measurement of boron isotope ratios in water samples using a Neptune MC-ICP-MS, after resolving the memory effect, which is a key problem, and investigating the impacts of mass bias and Si matrix effect. Using this method, it usually takes 20 min to perform one measurement on 0.1ppm boron solution with a precision of 0.23‰ (SD). If the relative deviation between a sample and the standard is large, the washout time needs to be doubled to achieve a higher precision. δ11B values of water samples from Yangbajing geothermal field vary from -10.53 to -9.13‰. Owing to the large difference B concentration and the small B isotope difference between deep geothermal water and surface water, B isotope ratios of the shallow geothermal fluids are dominated by the deep end member rather than the shallower one in the mixing process. As a consequence, δ11B-B relation is indicative basically of a dilution process. Vapor-liquid separation and calcite scaling also greatly influence B isotope fractionation. δ11B values of water samples from Dagejia geothermal field are from -15.98‰ to -11.67‰. Boron in Changma River near the field has two sources, freshwater lakes (Dajiamang Lake and Canke Lake) and geothermal waters. Finally, a preliminary discussion is included on boron geochemical characteristics of the salt lakes in Shuanghu area and other geothermal fields, to provide information for future studies on boron isotope geochemistry of geothermal systems and salt lakes in Tibet.
Resumo:
Over past ten years, a great development has been made in the Lu-Hf isotopic system with the advent of MC-ICP-MS. Based on a comprehensive review of available references in the related field, a novel analytical protocol of three exchange chromatographies after one mixed acid attacking geological samples was developed in this work, which not only avoids common multiple sample treatments for natural inhomegeneous samples, but also is useful for Rb-Sr, Sm-Nd and Lu-Hf isotopic system simultaneously, especially for the garnet- and apatite-bearing rocks for the Sm-Nd and Lu-Hf geochronology. An analytical procedure for the Lu and Hf concentration in geological samples determined by by ID-MC-ICP-MS was detailedly investigated. The Hf yield is > 90 % and total procedural blank is less than. 50 pg for Hf and 10 pg for Lu, respectively. The developed method was successfully applied to the determination of Lu and Hf concentrations for USGS geological materials. A one-column procedure for Hf purification in geological samples using common anion exchange chromatography and its isotopic analyses by MC-ICP-MS were also established. Multiple analyses of Standard Reference Materials demonstrate that this method was simple, time-saving, cheap and efficient, especially suitable for the Hf isotopic compositions of young samples. Finally, the measurements of Sr and Nd isotopic compositions using Neptune MC-ICP-MS were described briefly, which indicates that Neptune MC-ICP-MS can precisely measure Sr and Nd isotopic compositions as the TIMS does, even more efficient and less time-consuming than the TIMS method. The Hf isotopic characteristics of typical volcanic rocks (Cenozoic Changle-Linqu basalts, Mesozoic Fangcheng basalts, Mesozoic Jianguo basalts, Mesozoic Wulahada high-Mg andesite, Cenozoic Fanshi, Zuoquan and Xiyang-Pingding basalts of the Taihang Mountains, Paleozoic diamondiferous Menyin and Fuxian Kimblites) from the North China Craton were firstly studied in this work. Coupled with Nd isotopic compositions, it shows that the Hf isotopes could be a better tracer for mantle sources than the Nd isotopes. Individual kimberlite fields from both the Mengyin and Fuxian regions have quite uniform Hf isotopic compositions, similar to the situation for the Nd isotopes.
Resumo:
采用超临界CO2萃取破壁灵芝孢子,萃取条件22MPa,40℃,将所得的孢子油,经GC/MS性和定量分析,共检出18种脂肪酸成分,其中亚油酸和油酸占62.45%,不饱和脂肪酸占68.42%。
Resumo:
针对目前最常用的液- 液萃取、ICP- M S 测定法检测表生水体中微量稀土元素方法, 研究了不同pH值条件下, 酸性膦(65%HDEHP 和35%H2M EHP) 自表生水体中萃取稀土元素(REEs) 的回收率。结果表明, 在pH1~ 4 的范围内, 不同性质的水体(湖泊、河流、地下水) 有不同的REEs 回收率。其中湖水在pH 118~ 317 有90% 以上的回收率, 最高回收率为93164%; 河水在pH 211~ 315 范围内有90% 以上的回收率, 最高回收率为95152%; 地下水仅在pH 113~ 115 时回收率超过90% , 最高回收率为97161%。说明在萃取不同表生水体中稀土元素时, 需要调到特定的pH 值才能得到最好的萃取效果。
Resumo:
一定元素的同位素组成被认为是该元素特有的“指纹”,同位素组成测量是地球化学、生命科学、环境化学、地质科学和核科学等领域重要的研究手段。利用同位素技术开展生命过程,地球系统中的物理、化学、生物过程及其资源、环境与灾害效应,资源勘探,污染物溯源等方面的研究,既是该技术的前沿研究主题,也使相关领域的研究更加“精细量化”,从而在新的科学纵深揭示出更加清晰的规律。 1992年多接收电感耦合等离子体质谱仪(MC-ICP-MS)的问世,为同位素分析提供了一种强有力的技术手段,与传统的热电离同位素质谱相比,MC-ICP-MS有测量速度快、操作简便、灵敏度高等优点。而且,由于等离子体源产生的高温,在理论上能测量所有的金属元素和一些非金属元素,并已很好地解决了一些高电离电位元素同位素测量的难题(如Se, Zn, Hf等),用MC-ICP-MS确、精密测量各种元素同位素组成的方法正在逐渐得到发展和完善。目前,MC-ICP-MS较成熟的方法主要是针对核和地质科学研究中应用较多的U, Pb, Sm, Nd, Sr, Hf, B, Li等,在硒和锌同位素测量方法学的研究还相对较少(尤其是硒),对一些测量中受各种干扰较为严重的、原子量小于80 的元素同位素的测量技术还有待进一步深入探索和研究。锌、硒元素不仅与人类健康息息相关,而且随着质谱分析技术的发展,使其在环境地球化学、生命科学等领域有着广泛的应用前景。准确测量生物、食品、环境、地质等样品中的锌、硒元素含量、各种形态及其同位素组成受到越来越多的关注。锌、硒同位素准确测量的方法学研究,不仅可以广泛应用于各相关领域,也为锌和硒同位素基、标准物质研制奠定技术基础,从而为锌、硒元素含量和同位素测量提供量值溯源保障。 本工作针对锌和硒元素同位素组成以及生物、环境等样品中成分量准确测量存在的问题,通过使用六极杆碰撞室MC-ICP-MS行准确测量锌和硒元素同位素的技术研究,结合在化学计量研究中的长期实践及相关文献,从方法学角度和应用方面得出以下结论: 1.MC-ICP-MS器测量主要参数,如炬管轴向位置、载气流量、碰撞气流量、仪器稳定性等对测量结果影响很大,要获得高精度的测量结果,须优化和固定参数设置,保持仪器的稳定状态。在六极杆碰撞室MC-ICP-MS量锌同位素时,高纯氩气碰撞气模式是较为理想的模式,64Zn/66Zn、67Zn/66Zn、68Zn/66Zn同位素丰度比测量精度达到0.002-0.008%,70Zn/66Zn 测量精度达到0.01%;在高纯氢气和氩气碰撞气按一定比例混合的模式下, 76Se/80Se、77Se/80Se、78Se/80Se、82Se/80Se同位素丰度比测量精度达到0.004-0.005%。 2.采用高纯、高浓缩64Zn和66Zn配制了8个校正样品 (64Zn/66Zn:0.6-2.2);用高纯、高浓缩同位素76Se和82Se配制了16个校正样品(76Se/82Se: 0.05-11.8),用这些样品分别测量并计算了仪器系统误差校正系数K,这些校正样品的K64/66 和 K76/82的相对标准偏差分别为0.034%和0.03%,均在仪器的测量不确定度范围内,说明在校正样品同位素变化范围内,仪器测量同位素丰度比的校正系数没有发生明显变化。 3.在硒同位素丰度比值测量中,氢气碰撞气的使用是SeH产生的重要原因之一,Ar/H在2-7之间都可以满足硒同位素比值测量的要求,即保证较高的硒灵敏度、较小的SeH生成比例、稳定的同位素比值测量结果。本工作建立了SeH的校正计算公式,在对测量结果的质量歧视进行校正时,77Se和78Se的校正更为复杂,因为它们除自身产生的SeH外,还分别受到了来自76SeH和77SeH的影响,故校正质量偏移时应首先对SeH进行校正。对于不同的SeH生成比例,经过校正后,硒的同位素丰度比校正值是一致的,并不受SeH生成比例变化影响。 4.通过对IDMS程中的关键技术研究,明确了如何正确使用该方法以获得准确测量结果。IDMS法在测量步骤中引入的不确定度影响因素相对于其它化学分析方法较少,并且可以被明确地表达出来,测量结果可直接溯源到国际单位,因此,该方法对化学计量学研究具有十分重要的意义。 5.建立了适用于ICP-MS量血清、大豆粉、金枪鱼等多种复杂基体中锌和硒元素的样品前处理方法,建立了锌和硒的ICP-IDMS量方法。将建立的方法应用于人血清标准物质研制、国家计量院之间的国际比对和合作研究中,取得的优异成绩验证了所建方法的可靠性和可比性。IDMS法在样品前处理上不怕样品损失和高精度同位素丰度比测量的优点,使其在复杂基体中硒、锌的准确测量方面较其它分析方法具有独特的优势,可在生物、临床、环境、食品等方面的分析研究中广泛应用。
Resumo:
自然界锂同位素分馏强烈,这使得它在很多方面都得到了应用,如地球化学、天体化学和核工业等。所有这些领域都要求精确的测定6Li/7Li的比值。但由于锂是微量元素,而且在测试过程中还存在明显的干扰,因此在进行锂同位素比值测定之前必须对样品进行分离和富集。本文以锂元素标准样品和钾、钠、钙、镁元素标准样品的混合溶液为主要研究对象,采用阳离子交换树脂AG-50W-X8来分离富集锂,探索在不同淋洗介质条件下锂分离纯化的最佳介质条件。初步得出以下结论: 1、本次研究建立了相对简单、高效的锂同位素分离方法。用单一的柱子分离、提纯样品锂;用低浓度的盐酸(0.15M HCl)直接作为淋洗介质,操作过程简单。 2、对锂同位素比值测定产生潜在影响因素,如基体效应、回收率、流程空白等进行了实验研究,证实这些影响因素对于本次研究所建立的方法来说都是可以忽略不计的。 3、用MC-ICP-MS定样品的锂同位素组成,分析结果的准确度和精度与现阶段所报道数据相同。测定海水的锂同位素组成(+31.6±1.0‰,2σ)与Tomoscak 等(+31.8±1.9‰,2σ)的分析值相近。 4、该方法也适用于低含量的样品。我们分离并测定了不同类型样品的锂同位素组成,样品锂含量在0.064µg/g和132µg/g之间,说明该方法也同样适用于低含量地质样品的分析测定。