967 resultados para Motor behavior
Resumo:
The respiratory central pattern generator is a collection of medullary neurons that generates the rhythm of respiration. The respiratory central pattern generator feeds phrenic motor neurons, which, in turn, drive the main muscle of respiration, the diaphragm. The purpose of this thesis is to understand the neural control of respiration through mathematical models of the respiratory central pattern generator and phrenic motor neurons. ^ We first designed and validated a Hodgkin-Huxley type model that mimics the behavior of phrenic motor neurons under a wide range of electrical and pharmacological perturbations. This model was constrained physiological data from the literature. Next, we designed and validated a model of the respiratory central pattern generator by connecting four Hodgkin-Huxley type models of medullary respiratory neurons in a mutually inhibitory network. This network was in turn driven by a simple model of an endogenously bursting neuron, which acted as the pacemaker for the respiratory central pattern generator. Finally, the respiratory central pattern generator and phrenic motor neuron models were connected and their interactions studied. ^ Our study of the models has provided a number of insights into the behavior of the respiratory central pattern generator and phrenic motor neurons. These include the suggestion of a role for the T-type and N-type calcium channels during single spikes and repetitive firing in phrenic motor neurons, as well as a better understanding of network properties underlying respiratory rhythm generation. We also utilized an existing model of lung mechanics to study the interactions between the respiratory central pattern generator and ventilation. ^
Resumo:
Se realizará un análisis en baja frecuencia del comportamiento de sistemas vibratorios excitados principalmente por un motor eléctrico. El sistema está formado por un motor eléctrico acoplado a un volante de inercia que produce una carga sobre citado motor diferente según las configuraciones adoptadas, todo ello montado sobre una base metálica de acero, soportada esta, mediante resortes de diferente características. El estudio contemplará la identificación de frecuencias de excitación, resonancias, pérdidas de inserción de los sistemas, transmisibilidad, problemas de alineamiento, desajustes, modos propios... para cada una de las diferentes situaciones en las que opera el sistema. ABSTRACT. In this Project will proceed to an behavior analysis of vibrating systems in low frequency mainly excited by an electric motor. The system is comprised of an electric motor coupled to inertial flywheel (o flywheel) which produces a different load upon said engine according to the configurations adopted. This system is mounted on a steel metal base which is supported by springs of different characteristics. This study will consider the excitation frequency identification, system resonances, insertion loss, transmissibility, shaft dealignment, eccentricities, mismatches, modal frequencies of the plate… for each of the situations in which the system operates.
Resumo:
Multiple brain maps are commonly found in virtually every vertebrate sensory system. Although their functional significance is generally relatively little understood, they seem to specialize in processing distinct sensory parameters. Nevertheless, to yield the stimulus features that ultimately elicit the adaptive behavior, it appears that information streams have to be combined across maps. Results from current lesion experiments in the electrosensory system, however, suggest an alternative possibility. Inactivations of different maps of the first-order electrosensory nucleus in electric fish, the electrosensory lateral line lobe, resulted in markedly different behavioral deficits. The centromedial map is both necessary and sufficient for a particular electrolocation behavior, the jamming avoidance response, whereas it does not affect the communicative response to external electric signals. Conversely, the lateral map does not affect the jamming avoidance response but is necessary and sufficient to evoke communication behavior. Because the premotor pathways controlling the two behaviors in these fish appear to be separated as well, this system illustrates that sensory–motor control of different behaviors can occur in strictly segregated channels from the sensory input of the brain all through to its motor output. This might reflect an early evolutionary stage where multiplication of brain maps can satisfy the demand on processing a wider range of sensory signals ensuing from an enlarged behavioral repertoire, and bridging across maps is not yet required.
Resumo:
Previous work has shown that the fluorescent styryl dye FM1-43 stains nerve terminals in an activity-dependent fashion. This dye appears to label the membranes of recycled synaptic vesicles by being trapped during endocytosis. Stained terminals can subsequently be destained by repeating nerve stimulation in the absence of dye; the destaining evidently reflects escape of dye into the bathing medium from membranes of exocytosing synaptic vesicles. In the present study we tested two key aspects of this interpretation of FM1-43 behavior, namely: (i) that the dye is localized in synaptic vesicles, and (ii) that it is actually released into the bathing medium during destaining. To accomplish this, we first photolyzed the internalized dye in the presence of diaminobenzidine. This created an electron-dense reaction product that could be visualized in the electron microscope. Reaction product was confined to synaptic vesicles, as predicted. Second, using spectrofluorometry, we quantified the release of dye liberated into the medium from tubocurarine-treated nerve-muscle preparations. Nerve stimulation increased the amount of FM1-43 released, and we estimate that normally a stained synaptic vesicle contains a few hundred molecules of the dye. The key to the successful detection of released FM1-43 was to add the micelle-forming detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), which increased FM1-43 quantum yield by more than two orders of magnitude.
Resumo:
Qualquer tarefa motora ativa se dá pela ativação de uma população de unidades motoras. Porém, devido a diversas dificuldades, tanto técnicas quanto éticas, não é possível medir a entrada sináptica dos motoneurônios em humanos. Por essas razões, o uso de modelos computacionais realistas de um núcleo de motoneurônios e as suas respectivas fibras musculares tem um importante papel no estudo do controle humano dos músculos. Entretanto, tais modelos são complexos e uma análise matemática é difícil. Neste texto é apresentada uma abordagem baseada em identificação de sistemas de um modelo realista de um núcleo de unidades motoras, com o objetivo de obter um modelo mais simples capaz de representar a transdução das entradas do núcleo de unidades motoras na força do músculo associado ao núcleo. A identificação de sistemas foi baseada em um algoritmo de mínimos quadrados ortogonal para achar um modelo NARMAX, sendo que a entrada considerada foi a condutância sináptica excitatória dendrítica total dos motoneurônios e a saída foi a força dos músculos produzida pelo núcleo de unidades motoras. O modelo identificado reproduziu o comportamento médio da saída do modelo computacional realista, mesmo para pares de sinal de entrada-saída não usados durante o processo de identificação do modelo, como sinais de força muscular modulados senoidalmente. Funções de resposta em frequência generalizada do núcleo de motoneurônios foram obtidas do modelo NARMAX, e levaram a que se inferisse que oscilações corticais na banda-beta (20 Hz) podem influenciar no controle da geração de força pela medula espinhal, comportamento do núcleo de motoneurônios até então desconhecido.
Resumo:
Deep brain stimulation (DBS) provides significant therapeutic benefit for movement disorders such as Parkinson’s disease (PD). Current DBS devices lack real-time feedback (thus are open loop) and stimulation parameters are adjusted during scheduled visits with a clinician. A closed-loop DBS system may reduce power consumption and side effects by adjusting stimulation parameters based on patient’s behavior. Thus behavior detection is a major step in designing such systems. Various physiological signals can be used to recognize the behaviors. Subthalamic Nucleus (STN) Local field Potential (LFP) is a great candidate signal for the neural feedback, because it can be recorded from the stimulation lead and does not require additional sensors. This thesis proposes novel detection and classification techniques for behavior recognition based on deep brain LFP. Behavior detection from such signals is the vital step in developing the next generation of closed-loop DBS devices. LFP recordings from 13 subjects are utilized in this study to design and evaluate our method. Recordings were performed during the surgery and the subjects were asked to perform various behavioral tasks. Various techniques are used understand how the behaviors modulate the STN. One method studies the time-frequency patterns in the STN LFP during the tasks. Another method measures the temporal inter-hemispheric connectivity of the STN as well as the connectivity between STN and Pre-frontal Cortex (PFC). Experimental results demonstrate that different behaviors create different m odulation patterns in STN and it’s connectivity. We use these patterns as features to classify behaviors. A method for single trial recognition of the patient’s current task is proposed. This method uses wavelet coefficients as features and support vector machine (SVM) as the classifier for recognition of a selection of behaviors: speech, motor, and random. The proposed method is 82.4% accurate for the binary classification and 73.2% for classifying three tasks. As the next step, a practical behavior detection method which asynchronously detects behaviors is proposed. This method does not use any priori knowledge of behavior onsets and is capable of asynchronously detect the finger movements of PD patients. Our study indicates that there is a motor-modulated inter-hemispheric connectivity between LFP signals recorded bilaterally from STN. We utilize a non-linear regression method to measure this inter-hemispheric connectivity and to detect the finger movements. Our experimental results using STN LFP recorded from eight patients with PD demonstrate this is a promising approach for behavior detection and developing novel closed-loop DBS systems.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Office of Research and Development, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Office of Research and Development, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Mode of access: Internet.
Resumo:
Many authors report changes in the control of the trunk muscles in people with low back pain (LBP). Although there is considerable disagreement regarding the nature of these changes, we have consistently found differential effects on the deep intrinsic and superficial muscles of the lumbopelvic region. Two issues require consideration; first, the potential mechanisms for these changes in control, and secondly, the effect or outcome of changes in control for lumbopelvic function. Recent data indicate that experimentally induced pain may replicate some of the changes identified in people with LBP. While this does not exclude the possibility that changes in control of the trunk muscles may lead to pain, it does argue that, at least in some cases, pain may cause the changes in control. There are many possible mechanisms, including changes in excitability in the motor pathway, changes in the sensory system, and factors associated. with the attention demanding, stressful and fearful aspects of pain. A new hypothesis is presented regarding the outcome from differential effects of pain on the elements of the motor system. Taken together these data argue for strategies of prevention and rehabilitation of LBP (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
There is a substantial body of work in the scientific literature discussing the role of risk-taking behavior in the causation of injury. Despite the quantity of diverse writings on the subject most is in the form of theoretical commentaries. This review was conducted to critically assess the empirical evidence supporting the association between injury and risk-taking behavior. The review found six case-control studies and one retrospective cohort study, which met all the inclusion criteria. Meta-analysis was not possible due to the diversity of the independent and outcome variables in each of the studies reviewed. Overall the review found that risk-taking behavior, however it is measured, is associated with an increased chance of sustaining an injury except in the case of high skilled, risk-taking sports where the effect may be in the other direction. Drawing specific conclusions from the research presented in this review is difficult without an agreed conceptual framework for examining risk-taking behavior and injury. Considerable work needs to be done to provide a convincing evidence base on which to build public health interventions around risk behavior. However, sufficient evidence exists to suggest that effort in this area may be beneficial for the health of the community. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper presents empirical evidence suggesting that healthy humans can perform a two degree of freedom visuo-motor pursuit tracking task with the same response time delay as a one degree of freedom task. In contrast, the time delay of the response is influenced markedly by the nature of the motor synergy required to produce it. We suggest a conceptual account of this evidence based on adaptive model theory, which combines theories of intermittency from psychology and adaptive optimal control from engineering. The intermittent response planning stage has a fixed period. It possesses multiple optimal trajectory generators such that multiple degrees of freedom can be planned concurrently, without requiring an increase in the planning period. In tasks which require unfamiliar motor synergies, or are deemed to be incompatible, internal adaptive models representing movement dynamics are inaccurate. This means that the actual response which is produced will deviate from the one which is planned. For a given target-response discrepancy, corrective response trajectories of longer duration are planned, consistent with the principle of speed-accuracy trade-off. Compared to familiar or compatible tasks, this results in a longer response time delay and reduced accuracy. From the standpoint of the intermittency approach, the findings of this study help make possible a more integral and predictive account of purposive action. (c) 2005 Elsevier B.V. All rights reserved.