935 resultados para Morlaix estuary
Resumo:
Variations in the concentrations and microheterotrophic degradation rates of selected Polycyclic Aromatic Hydrocarbons (PAH) in the water column of the Tamar Estuary were investigated in relation to the major environmental variables. Concentrations of individual PAH varied typically between i and 50 ng l−1 Based on their observed environmental behaviour the PAH appeared divisible into two groupings: (1) low molecular weight PAH incorporating naphthalene, phenanthrene and anthracence and (a) the larger molecular weight homologues (fluoranthene, pyrene, chrysene, benz(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)-pyrene). Group 1 PAH showed a complex distribution throughout the estuary with no significant correlations with either salinity or suspended particulates. Based on their relatively low particle affinity and high water solubilities and vapour pressures, volatilization is proposed as an important process in determining their fate. Microheterotrophic turnover times of naphthalene varied between x and 30 days, and were independent of suspended solids with maximum degradation rates located in the central and urban regions of the Estuary. When compared with the flushing times for the Tamar (3–5 days), it is probable that heterotrophic activity is important in the removal of naphthalene (and possibly the other Group 1 PAH) from the estuarine environment. In contrast Group 2 PAH concentrations exhibited highly significant correlations with suspended particulates. Highest concentrations occurred at the turbidity maximum, with a secondary concentration maximum localized to the industrialized portion of the estuary and associated with anthropogenic inputs. Laboratory degradation studies of benzo(a)pyrene in water samples taken from the estuary showed turnover times for the compound of between 2000 and 9000 days. Degradation rates correlated positively with suspended solids. The high particulate affinity and microbial refractivity of Group 2 PAH indicate sediment burial as the principal tate of these PAH in the Tamar Estuary. Estuarine sediments contained typically 50–1500 ng g−1 dry weight of individual PAH which were comparable to the levels of Group 2 PAH associated with the suspended particulates. Highest concentrations occurred at the riverine end of the estuary resulting from unresolved inputs in the catchment. Subsequent dilution by less polluted marine sediments together with slow degradation results in a seaward trend of decreasing concentrations. However, there is a secondary maximum of PAH superimposed on this trend which is associated with urban Plymouth.
Resumo:
Procedures for the continuous in situ recording of salinity, temperature, dissolved oxygen concentration, pH and turbidity throughout an estuarine mixing profile have been developed. Application of these procedures in a study of the Tamar Estuary, south-west England has demonstrated the considerable temporal (short-term and seasonal) and geographical variability of these properties. The causes and interrelationships of this variability and their general implications with respect to field investigations of estuarine chemical interactions are discussed.
Resumo:
The uptake of 14C glucose by natural microbial populations has been studied in the Severn Estuary and Bristol Channel, U.K.; the turbidity (suspended solids) in the estuary varied between < 5 mg · 1−1 at the seaward extremity to >800 mg · 1−1 in the estuary proper. The heterotrophic potential, Vm, was found to correlate with turbidity and particulate organic carbon but there was no correlation between microbial biomass, as assessed by plate counts, and turbidity or Vm; measurement of Vm ranged from 0.9 × 10−4 to 288 × 10−4μgC·1−1·h−1 and turnover time from <2 to >100 h. In 17 out of 42 experiments, the uptake of 14C glucose did not conform to Michaelis kinetics and in five of these experiments the data suggested that there may be a threshold of glucose concentration below which there is no uptake.
Resumo:
Profiles of suspended particulate load and its organic and inorganic carbon contents as well as salinity, dissolved oxygen, ammonia and divalent manganese have been recorded throughout the mixing region of the Tamar Estuary,Southwest England, in late summer when there was pronounced net oxygen consumption. The results indicate that trapping of particulate organic detritus (of both riverine and marine origins) within the high turbidity zone contributes to the localisation and buffering of the seasonal oxygen demand exerted within the low salinity region of the estuary.
Resumo:
The primary production in the Bristol Channel, U.K., was studied from 1973 to 1977: in this estuary, the euphotic zone extends from less than 0.5 m to greater than 10m and there is a large riverine input of inorganic nutrients. The standing stock of phytoplankton chlorophyll a was measured in 1973 and 1974 and was similar throughout the Bristol Channel but the rate of primary production was much greater where the water was less turbid. The estimated primary production was 6.8g C m−2 for the most turbid region and 164.9g C m−2 for the Outer Bristol Channel. A larger proportion of the annual primary production occurred in the spring in the Outer Channel than in the most turbid regions. Phaeocystis developed into blooms in some, but not all, years and exhibited a different light saturation curve to other phytoplankton populations. Serial incubations of short duration gave higher fixation rates than day-long incubations and it is argued that photoinhibition is probably insignificant in a mixed water column. Excretion rates of dissolved organic carbon by phytoplankton were always low.