993 resultados para Molecular organization
Resumo:
The Centropomidae family consists of three genera, Centropomus, Lates and Psammoperca. Centropomus is the most diverse group, with six Centropomus species occur in the Western Atlantic Ocean C. poeyi Chávez, 1961, C. parallelus Poey, 1860, C. mexicanus Bocourt, 1868, C. pectinatus Poey, 1860 and C. ensiferus Poey, 1860. Some of these species are considered cryptic, because of its morphological traits showed low resolution for identification purposes. Despite showing great interest as a natural resource and fish culture, aspects of their diversity and karyotypic patterns are poorly understood. In this work morphological identification and comparison of mitochondrial 16S gene sequence were used to identify the species of the genus Centropomus occurring in Rio Grande do Norte, northeastern Brazil. Two sepecies were identified, C. undecimalis and C. mexicanus, which had the chromosomal aspects analyzed, through Classical cytogenetic method analyzes (conventional staining, C-banding, Ag-NORs), fluorochrome staining AT- and GC-specific, replication bands by incorporating of the base analog 5-Bromo-2’-deoxyuridine (5-BrdU), in situ chromosomal mapping of (TTAGGG)n sequences and in situ chromosome mapping 18S and 5S rRNA genes. Both species show 2n=48 acrocentric chromosomes, with ribosomal sites (Ag-NOR/18S rDNA/ Mitramycin+) in second chromosomal pair, in telomeric position on the long arm in C. mexicanus and interstitial in C. undecimalis. The nuclear organization pair (pair 2) shown a resolutive cytotaxonomic marker for these two species. The generated data reveal a lower species diversity than previously believed, suggesting that greater attention should be paid in taxonomic identification of the species, in view of optimize commercial actions exploitation, biological conservation and cultivation.
Resumo:
We have used whole exome sequencing to compare a group of presentation t(4;14) with t(11;14) cases of myeloma to define the mutational landscape. Each case was characterized by a median of 24.5 exonic nonsynonymous single-nucleotide variations, and there was a consistently higher number of mutations in the t(4;14) group, but this number did not reach statistical significance. We show that the transition and transversion rates in the 2 subgroups are similar, suggesting that there was no specific mechanism leading to mutation differentiating the 2 groups. Only 3% of mutations were seen in both groups, and recurrently mutated genes include NRAS, KRAS, BRAF, and DIS3 as well as DNAH5, a member of the axonemal dynein family. The pattern of mutation in each group was distinct, with the t(4;14) group being characterized by deregulation of chromatin organization, actin filament, and microfilament movement. Recurrent RAS pathway mutations identified subclonal heterogeneity at a mutational level in both groups, with mutations being present as either dominant or minor subclones. The presence of subclonal diversity was confirmed at a single-cell level using other tumor-acquired mutations. These results are consistent with a distinct molecular pathogenesis underlying each subgroup and have important impacts on targeted treatment strategies. The Medical Research Council Myeloma IX trial is registered under ISRCTN68454111.
Resumo:
Low-molecular-weight fucoidan (LMWF) is a sulfated polysaccharide extracted from brown seaweed that presents antithrombotic and pro-angiogenic properties. However, its mechanism of action is not well-characterized. Here, we studied the effects of LMWF on cell signaling and whole genome expression in human umbilical vein endothelial cells and endothelial colony forming cells. We observed that LMWF and vascular endothelial growth factor had synergistic effects on cell signaling, and more interestingly that LMWF by itself, in the absence of other growth factors, was able to trigger the activation of the PI3K/AKT pathway, which plays a crucial role in angiogenesis and vasculogenesis. We also observed that the effects of LMWF on cell migration were PI3K/AKT-dependent and that LMWF modulated the expression of genes involved at different levels of the neovessel formation process, such as cell migration and cytoskeleton organization, cell mobilization and homing. This provides a better understanding of LMWF's mechanism of action and confirms that it could be an interesting therapeutic approach for vascular repair.
Dinoflagellate Genomic Organization and Phylogenetic Marker Discovery Utilizing Deep Sequencing Data
Resumo:
Dinoflagellates possess large genomes in which most genes are present in many copies. This has made studies of their genomic organization and phylogenetics challenging. Recent advances in sequencing technology have made deep sequencing of dinoflagellate transcriptomes feasible. This dissertation investigates the genomic organization of dinoflagellates to better understand the challenges of assembling dinoflagellate transcriptomic and genomic data from short read sequencing methods, and develops new techniques that utilize deep sequencing data to identify orthologous genes across a diverse set of taxa. To better understand the genomic organization of dinoflagellates, a genomic cosmid clone of the tandemly repeated gene Alchohol Dehydrogenase (AHD) was sequenced and analyzed. The organization of this clone was found to be counter to prevailing hypotheses of genomic organization in dinoflagellates. Further, a new non-canonical splicing motif was described that could greatly improve the automated modeling and annotation of genomic data. A custom phylogenetic marker discovery pipeline, incorporating methods that leverage the statistical power of large data sets was written. A case study on Stramenopiles was undertaken to test the utility in resolving relationships between known groups as well as the phylogenetic affinity of seven unknown taxa. The pipeline generated a set of 373 genes useful as phylogenetic markers that successfully resolved relationships among the major groups of Stramenopiles, and placed all unknown taxa on the tree with strong bootstrap support. This pipeline was then used to discover 668 genes useful as phylogenetic markers in dinoflagellates. Phylogenetic analysis of 58 dinoflagellates, using this set of markers, produced a phylogeny with good support of all branches. The Suessiales were found to be sister to the Peridinales. The Prorocentrales formed a monophyletic group with the Dinophysiales that was sister to the Gonyaulacales. The Gymnodinales was found to be paraphyletic, forming three monophyletic groups. While this pipeline was used to find phylogenetic markers, it will likely also be useful for finding orthologs of interest for other purposes, for the discovery of horizontally transferred genes, and for the separation of sequences in metagenomic data sets.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Ciências Fisiológicas, Programa de Pós Graduação em Biologia Animal, 2015.
Resumo:
Poster presented at the 36th Annual Congress of the European Society of Mycobacteriology. Riga, Latvia, 28 June - 1 July 2015
Resumo:
Guarana seeds have the highest caffeine concentration among plants accumulating purine alkaloids, but in contrast with coffee and tea, practically nothing is known about caffeine metabolism in this Amazonian plant. In this study, the levels of purine alkaloids in tissues of five guarana cultivars were determined. Theobromine was the main alkaloid that accumulated in leaves, stems, inflorescences and pericarps of fruit, while caffeine accumulated in the seeds and reached levels from 3.3% to 5.8%. In all tissues analysed, the alkaloid concentration, whether theobromine or caffeine, was higher in young/immature tissues, then decreasing with plant development/maturation. Caffeine synthase activity was highest in seeds of immature fruit. A nucleotide sequence (PcCS) was assembled with sequences retrieved from the EST database REALGENE using sequences of caffeine synthase from coffee and tea, whose expression was also highest in seeds from immature fruit. The PcCS has 1083bp and the protein sequence has greater similarity and identity with the caffeine synthase from cocoa (BTS1) and tea (TCS1). A recombinant PcCS allowed functional characterization of the enzyme as a bifunctional CS, able to catalyse the methylation of 7-methylxanthine to theobromine (3,7-dimethylxanthine), and theobromine to caffeine (1,3,7-trimethylxanthine), respectively. Among several substrates tested, PcCS showed higher affinity for theobromine, differing from all other caffeine synthases described so far, which have higher affinity for paraxanthine. When compared to previous knowledge on the protein structure of coffee caffeine synthase, the unique substrate affinity of PcCS is probably explained by the amino acid residues found in the active site of the predicted protein.
Resumo:
Understanding the molecular mechanisms of oral carcinogenesis will yield important advances in diagnostics, prognostics, effective treatment, and outcome of oral cancer. Hence, in this study we have investigated the proteomic and peptidomic profiles by combining an orthotopic murine model of oral squamous cell carcinoma (OSCC), mass spectrometry-based proteomics and biological network analysis. Our results indicated the up-regulation of proteins involved in actin cytoskeleton organization and cell-cell junction assembly events and their expression was validated in human OSCC tissues. In addition, the functional relevance of talin-1 in OSCC adhesion, migration and invasion was demonstrated. Taken together, this study identified specific processes deregulated in oral cancer and provided novel refined OSCC-targeting molecules.
Resumo:
Although cartilaginous tumors have low microvascular density, vessels are important for the provision of nutrition so that the tumor can grow and generate metastasis. The aim of this study was to assess the value of the vascular pattern classification as a prognostic tool in chondrosarcomas (CSs) and its relation with vascular endothelial growth factor (VEGF) expression. This was a retrospective study of 21 enchondromas and 57 conventional CSs. Clinical data and outcome were retrieved from medical files. CSs histologic grades (on a scale of 1 to 3) were determined according to the World Health Organization classification. The vascular pattern (on a scale of A to C) was assessed through CD34, according to Kalinski. CD105 and VEGF were also evaluated. Poor outcome was significantly associated with vascular pattern groups B and C. Higher vascular pattern were 6.5 times more frequent in moderate-grade and high-grade CSs than in grade 1 CS. On multivariate analysis, a clear correlation was found between VEGF overexpression and B/C vascular patterns. Only 18 (benign and malignant) tumors stained for CD105. The results point to the use of the vascular pattern classification as a prognostic tool in CSs and to differentiate low-grade from moderate-grade/high-grade CSs. Vascular pattern might be also used to complement histologic grade, VEGF immunostaining, and microvascular density, for indicating a patient's prognosis. Low-grade CSs develop under low neoangiogenesis, which conforms to the slow growth rate of these tumors.
Resumo:
The introduction of spraying procedures to fabricate layer-by-layer (LbL) films has brought new possibilities for the control of molecular architectures and for making the LbL technique compliant with industrial processes. In this study we show that significantly distinct architectures are produced for dipping and spray-LbL films of the same components, which included DODAB/DPPG vesicles. The films differed notably in their thickness and stratified nature. The electrical response of the two types of films to aqueous solutions containing erythrosin was also different. With multidimensional projections we showed that the impedance for the DODAB/DPPG spray-LbL film is more sensitive to changes in concentration, being therefore more promising as sensing units. Furthermore, with surface-enhanced Raman scattering (SERS) we could ascribe the high sensitivity of the LbL films to adsorption of erythrosin.
Resumo:
The epididymis has an important role in the maturation of sperm for fertilization, but little is known about the epididymal molecules involved in sperm modifications during this process. We have previously described the expression pattern for an antigen in epididymal epithelial cells that reacts with the monoclonal antibody (mAb) TRA 54. Immunohistochemical and immunoblotting analyses suggest that the epitope of the epididymal antigen probably involves a sugar moiety that is released into the epididymal lumen in an androgen-dependent manner and subsequently binds to luminal sperm. Using column chromatography, SDS-PAGE with in situ digestion and mass spectrometry, we have identified the protein recognized by mAb TRA 54 in mouse epididymal epithelial cells. The ∼65 kDa protein is part of a high molecular mass complex (∼260 kDa) that is also present in the sperm acrosomal vesicle and is completely released after the acrosomal reaction. The amino acid sequence of the protein corresponded to that of albumin. Immunoprecipitates with anti-albumin antibody contained the antigen recognized by mAb TRA 54, indicating that the epididymal molecule recognized by mAb TRA 54 is albumin. RT-PCR detected albumin mRNA in the epididymis and fertilization assays in vitro showed that the glycoprotein complex containing albumin was involved in the ability of sperm to recognize and penetrate the egg zona pellucida. Together, these results indicate that epididymal-derived albumin participates in the formation of a high molecular mass glycoprotein complex that has an important role in egg fertilization.
Resumo:
The taxonomic status of a disjunctive population of Phyllomedusa from southern Brazil was diagnosed using molecular, chromosomal, and morphological approaches, which resulted in the recognition of a new species of the P. hypochondrialis group. Here, we describe P. rustica sp. n. from the Atlantic Forest biome, found in natural highland grassland formations on a plateau in the south of Brazil. Phylogenetic inferences placed P. rustica sp. n. in a subclade that includes P. rhodei + all the highland species of the clade. Chromosomal morphology is conservative, supporting the inference of homologies among the karyotypes of the species of this genus. Phyllomedusa rustica is apparently restricted to its type-locality, and we discuss the potential impact on the strategies applied to the conservation of the natural grassland formations found within the Brazilian Atlantic Forest biome in southern Brazil. We suggest that conservation strategies should be modified to guarantee the preservation of this species.
Resumo:
Despite the ecological and economic importance of passion fruit (Passiflora spp.), molecular markers have only recently been utilized in genetic studies of this genus. In addition, both basic genetic researches related to population studies and pre-breeding programs of passion fruit remain scarce for most Passiflora species. Considering the number of Passiflora species and the increasing use of these species as a resource for ornamental, medicinal, and food purposes, the aims of this review are the following: (i) to present the current condition of the passion fruit crop; (ii) to quantify the applications and effects of using molecular markers in studies of Passiflora; (iii) to present the contributions of genetic engineering for passion fruit culture; and (iv) to discuss the progress and perspectives of this research. Thus, the present review aims to summarize and discuss the relationship between historical and current progress on the culture, breeding, and molecular genetics of passion fruit.
Resumo:
Wormlike micelles formed by the addition to cetyltrimethylammonium bromide (CTAB) of a range of aromatic cosolutes with small molecular variations in their structure were systematically studied. Phenol and derivatives of benzoate and cinnamate were used, and the resulting mixtures were studied by oscillatory, steady-shear rheology, and the microstructure was probed by small-angle neutron scattering. The lengthening of the micelles and their entanglement result in remarkable viscoelastic properties, making rheology a useful tool to assess the effect of structural variations of the cosolutes on wormlike micelle formation. For a fixed concentration of CTAB and cosolute (200 mmol L(-1)), the relaxation time decreases in the following order: phenol > cinnamate> o-hydroxycinnamate > salicylate > o-methoxycinnamate > benzoate > o-methoxybenzoate. The variations in viscoelastic response are rationalized by using Mulliken population analysis to map out the electronic density of the cosolutes and quantify the barrier to rotation of specific groups on the aromatics. We find that the ability of the group attached to the aromatic ring to rotate is crucial in determining the packing of the cosolute at the micellar interface and thus critically impacts the micellar growth and, in turn, the rheological response. These results enable us for the first time to propose design rules for the self-assembly of the surfactants and cosolutes resulting in the formation of wormlike micelles with the cationic surfactant CTAB.