874 resultados para Modified Delphi method
Resumo:
The patent application relates to the method for producing functional nanocomposites made of paramagnetic nanoparticles with Ni0.5Zn0.5Fe2O4 stoichiometry and to the thus obtained product. The method comprises at least the following steps: producing functional nanocomposites by the modified polyol method; mechanically blending the functional nanocomposites with natural rubber and adding vulcanising agents; and thermoforming the functional nanocomposite.
Resumo:
Pós-graduação em Química - IBILCE
Resumo:
Pós-graduação em Química - IBILCE
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Química - IQ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Química - IBILCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Nanocomposites were prepared from mixture of different concentrations of ferroelectric nanoparticles in an elastomeric matrix based on the vulcanized natural rubber. The morphological characterization of nanocomposites was carried out using Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and Atomic force microscopy (AFM). The nanocrystalline ferroelectric oxide is potassium strontium niobate (KSN) with stoichiometry KSr2Nb5O15, and was synthesized by the chemical route using a modified polyol method, obtaining particle size and microstrain equal to 20 nm and 0.32, respectively. These ferroelectric nanoparticles were added into the natural rubber in concentrations equal to 1, 3, 5, 10, 20 and 50 phr (parts per hundred of rubber) forming ferroelectric nanocomposites (NR/KSN). Using morphological characterization, we identified the maximum value of surface roughness at low concentrations, in particular, sample with 3 phr of nanoparticles and factors such as encapsulation and uniformity in the distribution of nanoparticles into the natural rubber matrix are investigated and discussed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The presence of Cryptosporidium spp. in a cattle herd registered with an outbreak of diarrhea was investigated and the the molecular subtyping of Cryptosporidium parvum was characterized. Fecal samples from 85 Nellore beef cattle (Bos indicus) were collected and examined with Ziehl-Neelsen modified staining method. Fifty-four cattle (63.52%) had Cryptosporidium spp. oocysts in their feces. Fragments of genes encoding the 18S ribosomal RNA subunit and a 60-kDa glycoprotein (gp60) were amplified by nested PCR accomplished in the 11 most heavily parasitized samples, and the amplicons were sequenced. Eight of the 11 analyzed samples were positive for 18S rRNA sequences and identified monospecific infections with C. parvum. Seven samples were positive for gp60 and identified subtypes IIaA15G2R1 (6/11) and IIaA14G2R1 (1/11). This report is the first for C. parvum subtype IIaA14G2R1 in beef cattle in Brazil.
Resumo:
Pós-graduação em Saúde Coletiva - FMB
Resumo:
A demographic model is developed based on interbirth intervals and is applied to estimate the population growth rate of humpback whales (Megaptera novaeangliae) in the Gulf of Maine. Fecundity rates in this model are based on the probabilities of giving birth at time t after a previous birth and on the probabilities of giving birth first at age x. Maximum likelihood methods are used to estimate these probabilities using sighting data collected for individually identified whales. Female survival rates are estimated from these same sighting data using a modified Jolly–Seber method. The youngest age at first parturition is 5 yr, the estimated mean birth interval is 2.38 yr (SE = 0.10 yr), the estimated noncalf survival rate is 0.960 (SE = 0.008), and the estimated calf survival rate is 0.875 (SE = 0.047). The population growth rate (l) is estimated to be 1.065; its standard error is estimated as 0.012 using a Monte Carlo approach, which simulated sampling from a hypothetical population of whales. The simulation is also used to investigate the bias in estimating birth intervals by previous methods. The approach developed here is applicable to studies of other populations for which individual interbirth intervals can be measured.