981 resultados para Modificação dos Zeros


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hot spot identification (HSID) aims to identify potential sites—roadway segments, intersections, crosswalks, interchanges, ramps, etc.—with disproportionately high crash risk relative to similar sites. An inefficient HSID methodology might result in either identifying a safe site as high risk (false positive) or a high risk site as safe (false negative), and consequently lead to the misuse the available public funds, to poor investment decisions, and to inefficient risk management practice. Current HSID methods suffer from issues like underreporting of minor injury and property damage only (PDO) crashes, challenges of accounting for crash severity into the methodology, and selection of a proper safety performance function to model crash data that is often heavily skewed by a preponderance of zeros. Addressing these challenges, this paper proposes a combination of a PDO equivalency calculation and quantile regression technique to identify hot spots in a transportation network. In particular, issues related to underreporting and crash severity are tackled by incorporating equivalent PDO crashes, whilst the concerns related to the non-count nature of equivalent PDO crashes and the skewness of crash data are addressed by the non-parametric quantile regression technique. The proposed method identifies covariate effects on various quantiles of a population, rather than the population mean like most methods in practice, which more closely corresponds with how black spots are identified in practice. The proposed methodology is illustrated using rural road segment data from Korea and compared against the traditional EB method with negative binomial regression. Application of a quantile regression model on equivalent PDO crashes enables identification of a set of high-risk sites that reflect the true safety costs to the society, simultaneously reduces the influence of under-reported PDO and minor injury crashes, and overcomes the limitation of traditional NB model in dealing with preponderance of zeros problem or right skewed dataset.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rakaposhi is a synchronous stream cipher, which uses three main components: a non-linear feedback shift register (NLFSR), a dynamic linear feedback shift register (DLFSR) and a non-linear filtering function (NLF). NLFSR consists of 128 bits and is initialised by the secret key K. DLFSR holds 192 bits and is initialised by an initial vector (IV). NLF takes 8-bit inputs and returns a single output bit. The work identifies weaknesses and properties of the cipher. The main observation is that the initialisation procedure has the so-called sliding property. The property can be used to launch distinguishing and key recovery attacks. The distinguisher needs four observations of the related (K,IV) pairs. The key recovery algorithm allows to discover the secret key K after observing 29 pairs of (K,IV). Based on the proposed related-key attack, the number of related (K,IV) pairs is 2(128 + 192)/4 pairs. Further the cipher is studied when the registers enter short cycles. When NLFSR is set to all ones, then the cipher degenerates to a linear feedback shift register with a non-linear filter. Consequently, the initial state (and Secret Key and IV) can be recovered with complexity 263.87. If DLFSR is set to all zeros, then NLF reduces to a low non-linearity filter function. As the result, the cipher is insecure allowing the adversary to distinguish it from a random cipher after 217 observations of keystream bits. There is also the key recovery algorithm that allows to find the secret key with complexity 2 54.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper deals with the basic problem of adjusting a matrix gain in a discrete-time linear multivariable system. The object is to obtain a global convergence criterion, i.e. conditions under which a specified error signal asymptotically approaches zero and other signals in the system remain bounded for arbitrary initial conditions and for any bounded input to the system. It is shown that for a class of up-dating algorithms for the adjustable gain matrix, global convergence is crucially dependent on a transfer matrix G(z) which has a simple block diagram interpretation. When w(z)G(z) is strictly discrete positive real for a scalar w(z) such that w-1(z) is strictly proper with poles and zeros within the unit circle, an augmented error scheme is suggested and is proved to result in global convergence. The solution avoids feeding back a quadratic term as recommended in other schemes for single-input single-output systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Species distribution modelling (SDM) typically analyses species’ presence together with some form of absence information. Ideally absences comprise observations or are inferred from comprehensive sampling. When such information is not available, then pseudo-absences are often generated from the background locations within the study region of interest containing the presences, or else absence is implied through the comparison of presences to the whole study region, e.g. as is the case in Maximum Entropy (MaxEnt) or Poisson point process modelling. However, the choice of which absence information to include can be both challenging and highly influential on SDM predictions (e.g. Oksanen and Minchin, 2002). In practice, the use of pseudo- or implied absences often leads to an imbalance where absences far outnumber presences. This leaves analysis highly susceptible to ‘naughty-noughts’: absences that occur beyond the envelope of the species, which can exert strong influence on the model and its predictions (Austin and Meyers, 1996). Also known as ‘excess zeros’, naughty noughts can be estimated via an overall proportion in simple hurdle or mixture models (Martin et al., 2005). However, absences, especially those that occur beyond the species envelope, can often be more diverse than presences. Here we consider an extension to excess zero models. The two-staged approach first exploits the compartmentalisation provided by classification trees (CTs) (as in O’Leary, 2008) to identify multiple sources of naughty noughts and simultaneously delineate several species envelopes. Then SDMs can be fit separately within each envelope, and for this stage, we examine both CTs (as in Falk et al., 2014) and the popular MaxEnt (Elith et al., 2006). We introduce a wider range of model performance measures to improve treatment of naughty noughts in SDM. We retain an overall measure of model performance, the area under the curve (AUC) of the Receiver-Operating Curve (ROC), but focus on its constituent measures of false negative rate (FNR) and false positive rate (FPR), and how these relate to the threshold in the predicted probability of presence that delimits predicted presence from absence. We also propose error rates more relevant to users of predictions: false omission rate (FOR), the chance that a predicted absence corresponds to (and hence wastes) an observed presence, and the false discovery rate (FDR), reflecting those predicted (or potential) presences that correspond to absence. A high FDR may be desirable since it could help target future search efforts, whereas zero or low FOR is desirable since it indicates none of the (often valuable) presences have been ignored in the SDM. For illustration, we chose Bradypus variegatus, a species that has previously been published as an exemplar species for MaxEnt, proposed by Phillips et al. (2006). We used CTs to increasingly refine the species envelope, starting with the whole study region (E0), eliminating more and more potential naughty noughts (E1–E3). When combined with an SDM fit within the species envelope, the best CT SDM had similar AUC and FPR to the best MaxEnt SDM, but otherwise performed better. The FNR and FOR were greatly reduced, suggesting that CTs handle absences better. Interestingly, MaxEnt predictions showed low discriminatory performance, with the most common predicted probability of presence being in the same range (0.00-0.20) for both true absences and presences. In summary, this example shows that SDMs can be improved by introducing an initial hurdle to identify naughty noughts and partition the envelope before applying SDMs. This improvement was barely detectable via AUC and FPR yet visible in FOR, FNR, and the comparison of predicted probability of presence distribution for pres/absence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The deviation in the performance of active networks due to practical operational amplifiers (OA) is mainly because of the finite gain bandwidth productBand nonzero output resistanceR_0. The effect ofBandR_0on two OA impedances and single and multi-OA filters are discussed. In filters, the effect ofR_0is to add zeros to the transfer function often making it nonminimum phase. A simple method of analysis has been suggested for 3-OA biquad and coupled biquad circuits. A general method of noise minimization of the generalized impedance converter (GIC), while operating OA's within the prescribed voltage and current limits, is also discussed. The 3-OA biquadratic sections analyzed also exhibit noise behavior and signal handling capacity similar to the GIC. The GIC based structures are found to be better than other configurations both in biquadratic sections and direct realizations of higher order transfer functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

H.264 video standard achieves high quality video along with high data compression when compared to other existing video standards. H.264 uses context-based adaptive variable length coding (CAVLC) to code residual data in Baseline profile. In this paper we describe a novel architecture for CAVLC decoder including coeff-token decoder, level decoder total-zeros decoder and run-before decoder UMC library in 0.13 mu CMOS technology is used to synthesize the proposed design. The proposed design reduces chip area and improves critical path performance of CAVLC decoder in comparison with [1]. Macroblock level (including luma and chroma) pipeline processing for CAVLC is implemented with an average of 141 cycles (including pipeline buffering) per macroblock at 250MHz clock frequency. To compare our results with [1] clock frequency is constrained to 125MHz. The area required for the proposed architecture is 17586 gates, which is 22.1% improvement in comparison to [1]. We obtain a throughput of 1.73 * 10(6) macroblocks/second, which is 28% higher than that reported in [1]. The proposed design meets the processing requirement of 1080HD [5] video at 30frames/seconds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For p x n complex orthogonal designs in k variables, where p is the number of channels uses and n is the number of transmit antennas, the maximal rate L of the design is asymptotically half as n increases. But, for such maximal rate codes, the decoding delay p increases exponentially. To control the delay, if we put the restriction that p = n, i.e., consider only the square designs, then, the rate decreases exponentially as n increases. This necessitates the study of the maximal rate of the designs with restrictions of the form p = n+1, p = n+2, p = n+3 etc. In this paper, we study the maximal rate of complex orthogonal designs with the restrictions p = n+1 and p = n+2. We derive upper and lower bounds for the maximal rate for p = n+1 and p = n+2. Also for the case of p = n+1, we show that if the orthogonal design admit only the variables, their negatives and multiples of these by root-1 and zeros as the entries of the matrix (other complex linear combinations are not allowed), then the maximal rate always equals the lower bound.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, Space-Time Block Codes (STBCs) with reduced Sphere Decoding Complexity (SDC) are constructed for two-user Multiple-Input Multiple-Output (MIMO) fading multiple access channels. In this set-up, both the users employ identical STBCs and the destination performs sphere decoding for the symbols of the two users. First, we identify the positions of the zeros in the R matrix arising out of the Q-R decomposition of the lattice generator such that (i) the worst case SDC (WSDC) and (ii) the average SDC (ASDC) are reduced. Then, a set of necessary and sufficient conditions on the lattice generator is provided such that the R matrix has zeros at the identified positions. Subsequently, explicit constructions of STBCs which results in the reduced ASDC are presented. The rate (in complex symbols per channel use) of the proposed designs is at most 2/N-t where N-t denotes the number of transmit antennas for each user. We also show that the class of STBCs from complex orthogonal designs (other than the Alamouti design) reduce the WSDC but not the ASDC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The probability distribution of the eigenvalues of a second-order stochastic boundary value problem is considered. The solution is characterized in terms of the zeros of an associated initial value problem. It is further shown that the probability distribution is related to the solution of a first-order nonlinear stochastic differential equation. Solutions of this equation based on the theory of Markov processes and also on the closure approximation are presented. A string with stochastic mass distribution is considered as an example for numerical work. The theoretical probability distribution functions are compared with digital simulation results. The comparison is found to be reasonably good.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In voiced speech analysis epochal information is useful in accurate estimation of pitch periods and the frequency response of the vocal tract system. Ideally, linear prediction (LP) residual should give impulses at epochs. However, there are often ambiguities in the direct use of LP residual since samples of either polarity occur around epochs. Further, since the digital inverse filter does not compensate the phase response of the vocal tract system exactly, there is an uncertainty in the estimated epoch position. In this paper we present an interpretation of LP residual by considering the effect of the following factors: 1) the shape of glottal pulses, 2) inaccurate estimation of formants and bandwidths, 3) phase angles of formants at the instants of excitation, and 4) zeros in the vocal tract system. A method for the unambiguous identification of epochs from LP residual is then presented. The accuracy of the method is tested by comparing the results with the epochs obtained from the estimated glottal pulse shapes for several vowel segments. The method is used to identify the closed glottis interval for the estimation of the true frequency response of the vocal tract system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The shape of the vector and scalar K-l3 form factors is investigated by exploiting analyticity and unitarity in a model-independent formalism. The method uses as input dispersion relations for certain correlators computed in perturbative QCD in the deep Euclidean region, soft-meson theorems, and experimental information on the phase and modulus of the form factors along the elastic part of the unitarity cut. We derive constraints on the coefficients of the parameterizations valid in the semileptonic range and on the truncation error. The method also predicts low-energy domains in the complex t plane where zeros of the form factors are excluded. The results are useful for K-l3 data analyses and provide theoretical underpinning for recent phenomenological dispersive representations for the form factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The statistical properties of fractional Brownian walks are used to construct a path integral representation of the conformations of polymers with different degrees of bond correlation. We specifically derive an expression for the distribution function of the chains’ end‐to‐end distance, and evaluate it by several independent methods, including direct evaluation of the discrete limit of the path integral, decomposition into normal modes, and solution of a partial differential equation. The distribution function is found to be Gaussian in the spatial coordinates of the monomer positions, as in the random walk description of the chain, but the contour variables, which specify the location of the monomer along the chain backbone, now depend on an index h, the degree of correlation of the fractional Brownian walk. The special case of h=1/2 corresponds to the random walk. In constructing the normal mode picture of the chain, we conjecture the existence of a theorem regarding the zeros of the Bessel function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 1984 Jutila [5] obtained a transformation formula for certain exponential sums involving the Fourier coefficients of a holomorphic cusp form for the full modular group SL(2, Z). With the help of the transformation formula he obtained good estimates for the distance between consecutive zeros on the critical line of the Dirichlet series associated with the cusp form and for the order of the Dirichlet series on the critical line, [7]. In this paper we follow Jutila to obtain a transformation formula for exponential sums involving the Fourier coefficients of either holomorphic cusp forms or certain Maass forms for congruence subgroups of SL(2, Z) and prove similar estimates for the corresponding Dirichlet series.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Distributed Space-Time Block Codes (DSTBCs) from Complex Orthogonal Designs (CODs) (both square and non-square CODs other than the Alamouti design) are known to lose their single-symbol ML decodable (SSD) property when used in two-hop wireless relay networks using the amplify and forward protocol. For such a network, a new class of high rate, training-symbol embedded (TSE) SSD DSTBCs are proposed from TSE-CODs. The constructed codes include the training symbols within the structure of the code which is shown to be the key point to obtain high rate along with the SSD property. TSE-CODs are shown to offer full-diversity for arbitrary complex constellations. Non-square TSE-CODs are shown to provide better rates (in symbols per channel use) compared to the known SSD DSTBCs for relay networks when the number of relays is less than 10. Importantly, the proposed DSTBCs do not contain zeros in their codewords and as a result, antennas of the relay nodes do not undergo a sequence of switch on and off transitions within every codeword use. Hence, the proposed DSTBCs eliminate the antenna switching problem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of using a spatially smoothed forward-backward covariance matrix on the performance of weighted eigen-based state space methods/ESPRIT, and weighted MUSIC for direction-of-arrival (DOA) estimation is analyzed. Expressions for the mean-squared error in the estimates of the signal zeros and the DOA estimates, along with some general properties of the estimates and optimal weighting matrices, are derived. A key result is that optimally weighted MUSIC and weighted state-space methods/ESPRIT have identical asymptotic performance. Moreover, by properly choosing the number of subarrays, the performance of unweighted state space methods can be significantly improved. It is also shown that the mean-squared error in the DOA estimates is independent of the exact distribution of the source amplitudes. This results in a unified framework for dealing with DOA estimation using a uniformly spaced linear sensor array and the time series frequency estimation problems.