990 resultados para Mixed oxides
Resumo:
Aim. This paper is a report of a review conducted to identify (a) best practice in information transfer from the emergency department for multi-trauma patients; (b) conduits and barriers to information transfer in trauma care and related settings; and (c) interventions that have an impact on information communication at handover and beyond. Background. Information transfer is integral to effective trauma care, and communication breakdown results in important challenges to this. However, evidence of adequacy of structures and processes to ensure transfer of patient information through the acute phase of trauma care is limited. Data sources. Papers were sourced from a search of 12 online databases and scanning references from relevant papers for 1990–2009. Review methods. The review was conducted according to the University of York’s Centre for Reviews and Dissemination guidelines. Studies were included if they concerned issues that influenced information transfer for patients in healthcare settings. Results. Forty-five research papers, four literature reviews and one policy statement were found to be relevant to parts of the topic, but not all of it. The main issues emerging concerned the impact of communication breakdown in some form, and included communication issues within trauma team processes, lack of structure and clarity during handovers including missing, irrelevant and inaccurate information, distractions and poorly documented care. Conclusion. Many factors influence information transfer but are poorly identified in relation to trauma care. The measurement of information transfer, which is integral to patient handover, has not been the focus of research to date. Nonetheless, documented patient information is considered evidence of care and a resource that affects continuing care.
Resumo:
A series of porphyrins substituted in one or two meso-positions by diphenylphosphine oxide groups has been prepared by the palladium catalysed reaction of diphenylphosphine or its oxide with the corresponding bromoporphyrins. Compounds {MDPP-[P(O)Ph2]n} (M = H2, Ni, Zn; H2DPP = 5,15-diphenylporphyrin; n = 1, 2) were isolated in yields of 60-95%. The reaction is believed to proceed via the conventional oxidative addition, phosphination and reductive elimination steps, as the stoichiometric reaction of η1-palladio(II) porphyrin [PdBr(H2DPP)(dppe)] (H2DPP = 5,15-diphenylporphyrin; dppe = 1,2-bis(diphenylphosphino)ethane) with diphenylphosphine oxide also results in the desired mono-porphyrinylphosphine oxide [H2DPP-P(O)Ph2]. Attempts to isolate the tertiary phosphines failed due to their extreme air-sensitivity. Variable temperature 1H NMR studies of [H2DPP-P(O)Ph2] revealed an intrinsic lack of symmetry, while fluorescence spectroscopy showed that the phosphine oxide group does not behave as a "heavy atom" quencher. The electron withdrawing effect of the phosphine oxide group was confirmed by voltammetry. The ligands were characterised by multinuclear NMR and UV-visible spectroscopy as well as mass spectrometry. Single crystal X-ray crystallography showed that the bis(phosphine oxide) nickel(II) complex {[NiDPP-[P(O)Ph2]2} is monomeric in the solid state, with a ruffled porphyrin core and the two P=O fragments on the same side of the average plane of the molecule. On the other hand, the corresponding zinc(II) complex formed infinite chains through coordination of one Ph2PO substituent to the neighbouring zinc porphyrin through an almost linear P=O---Zn unit, leaving the other Ph2PO group facing into a parallel channel filled with disordered water molecules. These new phosphine oxides are attractive ligands for supramolecular porphyrin chemistry.
Resumo:
The building and construction sector is one of the five largest contributors to the Australian economy and is a key performance component in the economy of many other jurisdictions. However, the ongoing viability of this sector is increasingly reliant on its ability to foster and transfer innovated products and practices. Interorganisational networks, which bring together key industry stakeholders and facilitate the flows of information, resources and trust necessary to secure innovation, have emerged as a key growth strategy within this and other arenas. The blending of organisations, resources and purposes creates new, hybrid institutional forms that draw on a mix of contract, structure and interpersonal relationship as integration processes. This paper argues that hybrid networked arrangements, because they incorporate relational elements, require management strategies and techniques that not always synonymous with conventional management approaches, including those used within the building and construction sector. It traces the emergence of the Construction Innovation Project in Australia as a hybrid institutional arrangement moulding public, private and academic stakeholders of the building and construction industry into a coherent collective force aimed at fostering innovation and its application within all levels of the industry. Specifically, the paper examines the Construction Innovation Project to ascertain the impact of relational governance and its management to harness and leverage the skills, resources and capacities of members to secure innovative outcomes. Finally, the paper offers some prospects to guide the ongoing work of this body and any other charged with a similar integrative responsibility.
Resumo:
This research underlines the extensive application of nanostructured metal oxides in environmental systems such as hazardous waste remediation and water purification. This study tries to forge a new understanding of the complexity of adsorption and photocatalysis in the process of water treatment. Sodium niobate doped with a different amount of tantalum, was prepared via a hydrothermal reaction and was observed to be able to adsorb highly hazardous bivalent radioactive isotopes such as Sr2+ and Ra2+ions. This study facilitates the preparation of Nb-based adsorbents for efficiently removing toxic radioactive ions from contaminated water and also identifies the importance of understanding the influence of heterovalent substitution in microporous frameworks. Clay adsorbents were prepared via a two-step method to remove anionic and non-ionic herbicides from water. Firstly, layered beidellite clay was treated with acid in a hydrothermal process; secondly, common silane coupling agents, 3-chloro-propyl trimethoxysilane or triethoxy silane, were grafted onto the acid treated samples to prepare the adsorption materials. In order to isolate the effect of the clay surface, we compared the adsorption property of clay adsorbents with ƒ×-Al2O3 nanofibres grafted with the same functional groups. Thin alumina (£^-Al2O3) nanofibres were modified by the grafting of two organosilane agents 3-chloropropyltriethoxysilane and octyl triethoxysilane onto the surface, for the adsorptive removal of alachlor and imazaquin herbicides from water. The formation of organic groups during the functionalisation process established super hydrophobic sites along the surfaces and those non-polar regions of the surfaces were able to make close contact with the organic pollutants. A new structure of anatase crystals linked to clay fragments was synthesised by the reaction of TiOSO4 with laponite clay for the degradation of pesticides. Based on the Ti/clay ratio, these new catalysts showed a high degradation rate when compared with P25. Moreover, immobilized TiO2 on laponite clay fragments could be readily separated out from a slurry system after the photocatalytic reaction. Using a series of partial phase transition methods, an effective catalyst with fibril morphology was prepared for the degradation of different types of phenols and trace amount of herbicides from water. Both H-titanate and TiO2-(B) fibres coated with anatase nanocrystal were studied. When compared with a laponite clay photocatalyst, it was found that anatase dotted TiO2-(B) fibres prepared by a 45 h hydrothermal treatment followed by calcination were not only superior in performance in photocatalysis but could also be readily separated from a slurry system after photocatalytic reactions. This study has laid the foundation for the development of the ability to fabricate highly efficient nanostructured solids for the removal of radioactive ions and organic pollutants from contaminated water. These results now seem set to contribute to the development of advanced water purification devices in the future. These modified nanostructured materials with unusual properties have broadened their application range beyond their traditional use as adsorbents, to also encompass the storage of nuclear waste after concentrating from contaminated water.
Resumo:
The mineral sanjuanite Al2(PO4)(SO4)(OH)•9H2O has been characterised by Raman spectroscopy complimented by infrared spectroscopy. The mineral is characterised by an intense Raman band at 984 cm-1, assigned to the (PO4)3- ν1 symmetric stretching mode. A shoulder band at 1037 cm-1 is attributed to the (SO4)2- ν1 symmetric stretching mode. Two Raman bands observed at 1102 and 1148 cm-1 are assigned to (PO4)3- and (SO4)2- ν3 antisymmetric stretching modes. Multiple bands provide evidence for the reduction in symmetry of both anions. This concept is supported by the multiple sulphate and phosphate bending modes. Raman spectroscopy shows that there are more than one non-equivalent water molecules in the sanjuanite structure. There is evidence that structural disorder exists, shown by the complex set of overlapping bands in the Raman and infrared spectra. At least two types of water are identified with different hydrogen bond strengths. The involvement of water in the sanjuanite structure is essential for the mineral stability.
Resumo:
Nanowires of different metal oxides (SnO2, ZnO) have been grown by evaporation-condensation process. Their chemical composition has been investigated by using XPS. The standard XPS quantification through main photoelectron peaks, modified Auger parameter and valence band spectra were examined for the accurate determination of oxidation state of metals in the nanowires. Morphological investigation has been conducted by acquiring and analyzing the SEM images. For the simulation of working conditions of sensor, the samples were annealed in ultra high vacuum (UHV) up to 500°C and XPS analysis repeated after this treatment. Finally, the nanowires of SnO 2 have were used to produce a novel gas sensor based on Pt/oxide/SiC structure and operating as Schottky diode. Copyright © 2008 John Wiley & Sons, Ltd.
Resumo:
The mixed anion mineral parnauite Cu9[(OH)10|SO4|(AsO4)2].7H2O from two localities namely Cap Garonne Mine, Le Pradet, France and Majuba Hill mine, Pershing County, Nevada, USA has been studied by Raman spectroscopy. The Raman spectrum of the French sample is dominated by an intense band at 975 cm-1 assigned to the ν1 (SO4)2- symmetric stretching mode and Raman bands at 1077 and 1097 cm-1 may be attributed to the ν3 (SO4)2- antisymmetric stretching mode. Two Raman bands 1107 and 1126 cm-1 are assigned to carbonate CO32- symmetric stretching bands and confirms the presence of carbonate in the structure of parnauite. The comparatively sharp band for the Pershing County mineral at 976 cm-1 is assigned to the ν1 (SO4)2- symmetric stretching mode and a broad spectral profile centered upon 1097 cm-1 is attributed to the ν3 (SO4)2- antisymmetric stretching mode. Two intense bands for the Pershing County mineral at 851 and 810 cm-1 are assigned to the ν1 (AsO4)3- symmetric stretching and ν3 (AsO4)3- antisymmetric stretching modes. Two Raman bands for the French mineral observed at 725 and 777 cm-1 are attributed to the ν3 (AsO4)3- antisymmetric stretching mode. For the French mineral, a low intensity Raman band is observed at 869 cm-1 and is assigned to the ν1 (AsO4)3- symmetric stretching vibration. Chemical composition of parnauite remains open and the question may be raised is parnauite a solid solution of two or more minerals such as a copper hydroxy-arsenate and a copper hydroxy sulphate.
Resumo:
Graphene, functionalized with oleylamine (OA) and soluble in non-polar organic solvents, was produced on a large scale with a high yield by combining the Hummers process for graphite oxidation, an amine-coupling process to make OA-functionalized graphite oxide (OA-GO), and a novel reduction process using trioctylphosphine (TOP). TOP acts as both a reducing agent and an aggregation-prevention surfactant in the reduction of OA-GO in 1,2-dichlorobenzene (DCB). The reduction of OA-GO is confirmed by X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and Raman spectroscopy. The exfoliation of GO, OA GO, and OA-functionalized graphene (OA-G) is verified by atomic force microscopy. The conductivity of TOP-reduced OA G, which is deduced from the current–voltage characteristics of a vacuum-filtered thin film, shows that the reduction of functionalized GO by TOP is as effective as the reduction of GO by hydrazine.
Resumo:
The United States Supreme Court has handed down a once in a generation patent law decision that will have important ramifications for the patentability of non-physical methods, both internationally and in Australia. In Bilski v Kappos, the Supreme Court considered whether an invention must either be tied to a machine or apparatus, or transform an article into a different state or thing to be patentable. It also considered for the first time whether business methods are patentable subject matter. The decision will be of particular interest to practitioners who followed the litigation in Grant v Commissioner of Patents, a Federal Court decision in which a Brisbane-based inventor was denied a patent over a method of protecting an asset from the claims of creditors.
Resumo:
The psychological contract is a key analytical device utilised by both academics and practitioners to conceptualise and explore the dynamics of the employment relationship. However, despite the recognised import of the construct, some authors suggest that its empirical investigation has fallen into a 'methodological rut' [Conway & Briner, 2005, p. 89] and is neglecting to assess key tenets of the concept, such as its temporal and dynamic nature. This paper describes the research design of a longitudinal, mixed methods study which draws upon the strengths of both qualitative and quantitative modes of inquiry in order to explore the development of, and changes in, the psychological contract. Underpinned by a critical realist philosophy, the paper seeks to offer a research design suitable for exploring the process of change not only within the psychological contract domain, but also for similar constructs in the human resource management and broader organisational behaviour fields.
Resumo:
Mixed convection of a two-dimensional laminar incompressible flow along a horizontal flat plate with streamwise sinusoidal surface temperature has been numerically investigated for different values of Rayleigh number and Reynolds number for constant values of Prandtl number, amplitude and frequency of periodic temperature. The numerical scheme is based on the finite element method adapted to rectangular non-uniform mesh elements by a non-linear parametric solution algorithm. The fluid considered in this study is air. The results are obtained for the Rayleigh number and Reynolds number ranging from 102 to 104 and 1 to 100, respectively, with constant physical properties for the fluid medium considered. Velocity and temperature profiles, streamlines, isotherms, and average Nusselt numbers are presented to observe the effect of the investigating parameters on fluid flow and heat transfer characteristics. The present results show that the convective phenomena are greatly influenced by the variation of Rayleigh numbers and Reynolds number.
Resumo:
In this paper, three metaheuristics are proposed for solving a class of job shop, open shop, and mixed shop scheduling problems. We evaluate the performance of the proposed algorithms by means of a set of Lawrence’s benchmark instances for the job shop problem, a set of randomly generated instances for the open shop problem, and a combined job shop and open shop test data for the mixed shop problem. The computational results show that the proposed algorithms perform extremely well on all these three types of shop scheduling problems. The results also reveal that the mixed shop problem is relatively easier to solve than the job shop problem due to the fact that the scheduling procedure becomes more flexible by the inclusion of more open shop jobs in the mixed shop.