915 resultados para Misconduct in office
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Educação para a Ciência - FC
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Reabilitação Oral - FOAR
Resumo:
Pós-graduação em Educação para a Ciência - FC
Resumo:
Aim To assess the initial cytotoxicity and the late phenotype marker expression of odontoblast-like cells (MDPC-23) subjected to less aggressive in-office bleaching therapies. Methodology A 17.5% hydrogen peroxide (H2O2) gel was applied for 45, 15 or 5 min to enamel/dentine discs adapted to trans-wells positioned over cultured MDPC-23 cells. No treatment was performed on the negative control. Immediately after bleaching, the cell viability, gene expression of inflammatory mediators and quantification of H2O2 diffusion were evaluated. The ALP activity, DSPP and DMP-1 gene expression and mineralized nodule deposition (MND) were assessed at 7, 14 or 21 days post-bleaching and analysed statistically with Mann–Whitney U-tests (α = 5%). Results H2O2 diffusion, proportional to treatment time, was observed in all bleached groups. Reductions of approximately 31%, 21% and 13% in cell viability were observed for the 45-, 15- and 5-min groups, respectively. This reduction was significant (P < 0.05) for the 45- and 15-min groups, which also presented significant (P < 0.05) over-expression of inflammatory mediators. The 45-min group was associated with significant (P < 0.05) reductions in DMP-1/DSPP expression at all periods, relative to control. The ALP activity and MND were reduced only in initial periods. The 15-min group had less intense reduction of all markers, with no difference to control at 21 days. Conclusions The 17.5% H2O2 applied to tooth specimens for 5 min caused no alteration in the odontoblast-like cells. When this gel was applied for 45 or 15 min, a slight cytotoxicity, associated with alterations in phenotypic markers, was observed. However, cells were able to recover their functions up to 21 days post-bleaching.
Resumo:
The aim of this in vitro study was to evaluate the trans-enamel and transdentinal cytotoxic effects of two in-office tooth bleaching techniques that employ bleaching gels containing 20% and 38% of H2 O2 on cultured odontoblast-like cell line (MDPC-23). Sixty enamel/dentin discs were obtained from bovine central incisors and placed individually in artificial pulp chambers. Six groups were formed according to the following enamel treatments: G1- 20% H2 O2 (1 application); G2- 20% H2 O2 (2 applications); G3- 38% H2 O2 (1 application); G4- 38% H2 O2 (2 applications); G5- 38% H2 O2 (3 applications); and G6- control (no treatment). In G1 and G2, the bleaching gel was left in contact with the enamel surface for 45 min in each application. However, in G3, G4, and G5 the bleaching gel was applied for only 10 min per application. After the last application, the extracts were collected and applied on previously cultured cells (30.000 cells/cm2 ) for 24 h. Cell metabolism was evaluated by the MTT assay and cell morphology was analysed by scanning electron microscopy. Cell metabolism decreased by 96.29%; 96.11%; 96.42%; 95.62%; and 97.18% in G1, G2, G3, G4, and G5, respectively. All treated groups differed significantly from non-treated control group (G6) (p < 0.05). However, the difference in cell metabolism among treated groups was not significant statistically. In addition, significant morphological cell alterations were observed in all treated groups. Under the tested experimental conditions, the extracts collected after both tooth bleaching techniques evaluated in this study caused severe toxic effects on cultured odontoblast-like cell MDPC-23.
Resumo:
The demand for cosmetic dentistry, including teeth whitening, has increased in recent years. The home teeth whitening and in-office, are widely used in dental practice. The mechanism by which it works is by oxidation of the chromogenic existing tooth structure. This is an effective and minimally invasive procedure that achieves tooth lighten the color, however, may cause alterations in the enamel surface, such as a dental permeability increase. Another effect caused by this procedure is tooth sensitivity, being the most common side effect, up to 65% of individuals have had a secondary effect at least once during treatment. This sensitivity and gingival irritation caused by bleaching may vary depending on the patient and used bleaching product
Resumo:
Since bleaching has become a popular procedure, the effect of peroxides on dental hard tissues is of great interest in research. Purpose: The aim of this in vitro study was to perform a qualitative analysis of the human enamel after the application of in-office bleaching agents, using Scanning Electron Microscopy (SEM). Materials and Methods: Twenty intact human third molars extracted for orthodontic reasons were randomly divided into four groups (n=5) treated as follows: G1- storage in artificial saliva (control group); G2- four 30-minute applications of 35% carbamide peroxide (total exposure: 2h); G3- four 2-hour exposures to 35% carbamide peroxide (total exposure: 8h); G4- two applications of 35% hydrogen peroxide, which was light-activated with halogen lamp at 700mW/cm2 during 7min and remained in contact with enamel for 20min (total exposure: 40min). All bleaching treatments adopted in this study followed the application protocols advised by manufacturers. Evaluation of groups submitted to 35% carbamide peroxide was carried out after two time intervals (30 minutes and 2 hours per session), following the extreme situations recommended by the manufacturer. Specimens were prepared for SEM analysis performing gold sputter coating under vacuum and were examined using 15kV at 500x and 2000x magnification. Results: Morphological alterations on the enamel surface were similarly detected after bleaching with either 35% carbamide peroxide or 35% hydrogen peroxide. Surface porosities were characteristic of an erosive process that took place on human enamel. Depression areas, including the formation of craters, and exposure of enamel rods could also be detected. Conclusion: Bleaching effects on enamel morphology were randomly distributed throughout enamel surface and various degrees of enamel damage could be noticed. Clinical significance: In-office bleaching materials may adversely affect enamel morphology and therefore should be used with caution.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Context: The possibility of bleaching vital teeth with peroxide-based products considerably revolutionized esthetic dentistry. Aim: The aim of this clinical study was to evaluate tooth color change and dental sensitivity after exposure to preloaded film containing a 10% hydrogen peroxide whitening system (Opalescence Trθswhite Supreme). Materials and Methods: A total of 13 volunteers, aged 18 to 25 years, participated in this study. The patients used the whitening system once a day for 60 minutes during the 8-day study. For maxillary incisors and canines, the color change was visually evaluated with the Vita color scale before, immediately, and six months after the treatment. Tooth sensitivity was evaluated during the daily gel applications. All whitening applications were done in office and under the supervision of a dental professional. Statistical Analysis Used: The results were analyzed using the Friedman Test (nonparametric repeated measures ANOVA) at a level of 5%, and Dunn's Multiple Comparison Test at the level of 5%. Results: It was verified that the original mean color values observed at the baseline analysis differed significantly from those observed immediately after bleaching, as well as from those seen in the analysis at six months ( P = 0.001). There was no significant difference between the mean color values observed in the immediate time and in the analysis at six months ( P = 0.474). No tooth sensitivity was observed in any patients. Conclusion: It was concluded that the bleaching technique using the 10% hydrogen peroxide system was effective in a short period of time without tooth sensitivity during applications.
Resumo:
This study evaluated color change, stability, and tooth sensitivity in patients submitted to different bleaching techniques. Material and methods: In this study, 48 patients were divided into five groups. A half-mouth design was conducted to compare two in-office bleaching bleaching techniques (with and without light activation): G1: 35% hydrogen peroxide (HP) (Lase Peroxide - DMC Equipments, Sao Carlos, SP, Brazil) + hybrid light (HL) (LED/Diode Laser, Whitening Lase II DMC Equipments, Sao Carlos, SP, Brazil); G2: 35% HP; G3: 38% HP (X-traBoost - Ultradent, South Jordan UT, USA) + HL; G4: 38% HP; and G5: 15% carbamide peroxide (CP) (Opalescence PF - Ultradent, South Jordan UT, USA). For G1 and G3, HP was applied on the enamel surface for 3 consecutive applications activated by HL. Each application included 3x3' HL activations with 1' between each interval; for G2 and G4, HP was applied 3x15' with 15' between intervals; and for G5, 15% CP was applied for 120'/10 days at home. A spectrophotometer was used to measure color change before the treatment and after 24 h, 1 week, 1, 6, 12, 18 and 24 months. A VAS questionnaire was used to evaluate tooth sensitivity before the treatment, immediately following treatment, 24 h after and finally 1 week after. Results: Statistical analysis did not reveal any significant differences between in-office bleaching with or without HL activation related to effectiveness; nevertheless the time required was less with HL. Statistical differences were observed between the result after 24 h, 1 week and 1, 6, 12, 18 and 24 months (integroup). Immediately, in-office bleaching increased tooth sensitivity. The groups activated with HL required less application time with gel. Conclusion: All techniques and bleaching agents used were effective and demonstrated similar behaviors.
Resumo:
As várias opções para a realização de tratamentos estéticos conservadores permitem ao profissional a escolha de materiais e técnicas apropriados, que melhor se enquadrem nas características individuais de cada paciente e na realidade de seu consultório. No caso clínico apresentado, a técnica de clareamento dental em consultório com peróxido de hidrogênio a 35% (Total Blanc Office, DFL), ativado com luz híbrida LED/LASER e a microabrasão de esmalte com pasta de acido fosfórico a 37% e pedra pomes, foram associados. Os resultados com o clareamento em consultório são imediatos, de forma que o profissional dispõe de total controle sobre aplicação do gel clareador em áreas e dentes específicos. A microabrasão do esmalte é um tratamento simples e custo relativamente baixo, remove as manchas superficiais do esmalte com preservação de estrutura dental. No caso apresentado, a associação das duas técnicas proporcionou a obtenção de excelente resultado estético em apenas uma sessão de atendimento.
Resumo:
Today, the bleaching of nonvital, discolored teeth is a low-risk routine treatment for improving esthetics. This review article focuses on the etiology of tooth discolorations, different treatment techniques, and risks of bleaching procedures. Some tooth discolorations in endodontically treated teeth are caused by dental treatments. The three most popular techniques for nonvital tooth bleaching are the walking bleach technique, inside/outside bleaching, and in-office bleaching. The walking bleach technique is a relatively reliable, fairly simple technique for dentists and patients. Inside/outside bleaching can be used additionally when internal and external bleaching must be combined. Inoffice bleaching seems to be a short-term solution, the effects of which can largely be attributed to dehydration of the teeth. There are still some open questions concerning the bleaching agents. Improved safety seems desirable with regard to adding thiourea as a scavenger of radicals or newer materials such as sodium percarbonate. The thermocatalytic technique, insufficient cervical sealing, and high concentrations of bleaching agents should be avoided, as this can increase the risk of cervical root resorptions. Patients should be informed about the low predictability of bleaching success and the risk of recurrent discoloration. The risk of cervical root resorption should be discussed with the patient. There is a strong correlation between root resorption and dental trauma.