975 resultados para Minstrel shows.
Resumo:
OBJECTIVE: To test common genetic variants for association with seasonality (seasonal changes in mood and behavior) and to investigate whether there are shared genetic risk factors between psychiatric disorders and seasonality. METHOD: Genome-wide association studies (GWASs) were conducted in Australian (between 1988 and 1990 and between 2010 and 2013) and Amish (between May 2010 and December 2011) samples in whom the Seasonal Pattern Assessment Questionnaire (SPAQ) had been administered, and the results were meta-analyzed in a total sample of 4,156 individuals. Genetic risk scores based on results from prior large GWAS studies of bipolar disorder, major depressive disorder (MDD), and schizophrenia were calculated to test for overlap in risk between psychiatric disorders and seasonality. RESULTS: The most significant association was with rs11825064 (P = 1.7 × 10⁻⁶, β = 0.64, standard error = 0.13), an intergenic single nucleotide polymorphism (SNP) found on chromosome 11. The evidence for overlap in risk factors was strongest for schizophrenia and seasonality, with the schizophrenia genetic profile scores explaining 3% of the variance in log-transformed global seasonality scores. Bipolar disorder genetic profile scores were also associated with seasonality, although at much weaker levels (minimum P value = 3.4 × 10⁻³), and no evidence for overlap in risk was detected between MDD and seasonality. CONCLUSIONS: Common SNPs of large effect most likely do not exist for seasonality in the populations examined. As expected, there were overlapping genetic risk factors for bipolar disorder (but not MDD) with seasonality. Unexpectedly, the risk for schizophrenia and seasonality had the largest overlap, an unprecedented finding that requires replication in other populations and has potential clinical implications considering overlapping cognitive deficits in seasonal affective disorders and schizophrenia.
Resumo:
BACKGROUND: More than 80 % of all terrestrial plant species establish an arbuscular mycorrhiza (AM) symbiosis with Glomeromycota fungi. This plant-microbe interaction primarily improves phosphate uptake, but also supports nitrogen, mineral, and water aquisition. During the pre-contact stage, the AM symbiosis is controled by an exchange of diffusible factors from either partner. Amongst others, fungal signals were identified as a mix of sulfated and non-sulfated lipochitooligosaccharides (LCOs), being structurally related to rhizobial nodulation (Nod)-factor LCOs that in legumes induce the formation of nitrogen-fixing root nodules. LCO signals are transduced via a common symbiotic signaling pathway (CSSP) that activates a group of GRAS transcription factors (TFs). Using complex gene expression fingerprints as molecular phenotypes, this study primarily intended to shed light on the importance of the GRAS TFs NSP1 and RAM1 for LCO-activated gene expression during pre-symbiotic signaling. RESULTS: We investigated the genome-wide transcriptional responses in 5 days old primary roots of the Medicago truncatula wild type and four symbiotic mutants to a 6 h challenge with LCO signals supplied at 10(-7/-8) M. We were able to show that during the pre-symbiotic stage, sulfated Myc-, non-sulfated Myc-, and Nod-LCO-activated gene expression almost exclusively depends on the LysM receptor kinase NFP and is largely controled by the CSSP, although responses independent of this pathway exist. Our results show that downstream of the CSSP, gene expression activation by Myc-LCOs supplied at 10(-7/-8) M strictly required both the GRAS transcription factors RAM1 and NSP1, whereas those genes either co- or specifically activated by Nod-LCOs displayed a preferential NSP1-dependency. RAM1, a central regulator of root colonization by AM fungi, controled genes activated by non-sulfated Myc-LCOs during the pre-symbiotic stage that are also up-regulated in areas with early physical contact, e.g. hyphopodia and infecting hyphae; linking responses to externally applied LCOs with early root colonization. CONCLUSIONS: Since both RAM1 and NSP1 were essential for the pre-symbiotic transcriptional reprogramming by Myc-LCOs, we propose that downstream of the CSSP, these GRAS transcription factors act synergistically in the transduction of those diffusible signals that pre-announce the presence of symbiotic fungi.
Resumo:
2-(4-Amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203) and related compounds are a series of anti-cancer candidate pharmaceuticals (Table 1.), that have been shown to activate the AhR. We show that these compounds are high affinity ligands for the rat AhR, but a quantitative assay for their ability to induce CYP1A1 RNA in H4IIEC3 cells, a measure of activation of the AhR, showed a poor relationship between affinity for the AhR and ability to induce CYP1A1 RNA. 5F 203, an agonist with low potency, was able to antagonise the induction of CYP1A1 RNA by TCDD, while IH 445, a potent agonist, did not antagonise the induction of CYP1A1 RNA by TCDD, and Schild analysis confirmed 5F 203 to be a potent antagonist of the induction of CYP1A1 RNA by TCDD in H4IIEC3 cells. In contrast, several benzothiazoles show potent induction of CYP1A1 RNA in human MCF-7 cells, and 5F 203 is unable to detectably antagonise the induction of CYP1A1 RNA in MCF-7 cells, showing a species difference in antagonism. Evaluation of the antiproliferative activity of benzothiazoles showed that the ability to agonise the AhR correlated with growth inhibition both in H4IIEC3 cells for a variety of benzothiazoles, and between H4IIEC3 and MCF-7 cells for 5F 203, suggesting an important role of agonism of the AhR in the anti-proliferative activity of benzothiazoles.
Resumo:
2016
Resumo:
The thermal decomposition of natural ammonium oxalate known as oxammite has been studied using a combination of high resolution thermogravimetry coupled to an evolved gas mass spectrometer and Raman spectroscopy coupled to a thermal stage. Three mass loss steps were found at 57, 175 and 188°C attributed to dehydration, ammonia evolution and carbon dioxide evolution respectively. Raman spectroscopy shows two bands at 3235 and 3030 cm-1 attributed to the OH stretching vibrations and three bands at 2995, 2900 and 2879 cm-1, attributed to the NH vibrational modes. The thermal degradation of oxammite may be followed by the loss of intensity of these bands. No intensity remains in the OH stretching bands at 100°C and the NH stretching bands show no intensity at 200°C. Multiple CO symmetric stretching bands are observed at 1473, 1454, 1447 and 1431cm-1, suggesting that the mineral oxammite is composed of a mixture of chemicals including ammonium oxalate dihydrate, ammonium oxalate monohydrate and anhydrous ammonium oxalate.
Resumo:
In this study we examined the impact of weather variability and tides on the transmission of Barmah Forest virus (BFV) disease and developed a weather-based forecasting model for BFV disease in the Gladstone region, Australia. We used seasonal autoregressive integrated moving-average (SARIMA) models to determine the contribution of weather variables to BFV transmission after the time-series data of response and explanatory variables were made stationary through seasonal differencing. We obtained data on the monthly counts of BFV cases, weather variables (e.g., mean minimum and maximum temperature, total rainfall, and mean relative humidity), high and low tides, and the population size in the Gladstone region between January 1992 and December 2001 from the Queensland Department of Health, Australian Bureau of Meteorology, Queensland Department of Transport, and Australian Bureau of Statistics, respectively. The SARIMA model shows that the 5-month moving average of minimum temperature (β = 0.15, p-value < 0.001) was statistically significantly and positively associated with BFV disease, whereas high tide in the current month (β = −1.03, p-value = 0.04) was statistically significantly and inversely associated with it. However, no significant association was found for other variables. These results may be applied to forecast the occurrence of BFV disease and to use public health resources in BFV control and prevention.
Resumo:
The one-dimensional propagation of a combustion wave through a premixed solid fuel for two-stage kinetics is studied. We re-examine the analysis of a single reaction travelling-wave and extend it to the case of two-stage reactions. We derive an expression for the travelling wave speed in the limit of large activation energy for both reactions. The analysis shows that when both reactions are exothermic, the wave structure is similar to the single reaction case. However, when the second reaction is endothermic, the wave structure can be significantly different from single reaction case. In particular, as might be expected, a travelling wave does not necessarily exist in this case. We establish conditions in the limiting large activation energy limit for the non-existence, and for monotonicity of the temperature profile in the travelling wave.
Resumo:
A combination of X-ray diffraction, thermal analysis and Raman spectroscopy was employed to characterise the ageing of alumina hydrolysates synthesised from the hydrolysis of anhydrous tri-sec-butoxyaluminium(III). X-Ray diffraction showed that the alumino-oxy(hydroxy) hydrolysates were pseudoboehmite. For boehmite the lamellar spacings are in the b direction and multiple d(020) peaks are observed for the un-aged hydrolysate. After 4 h of ageing, a single d(020) peak is observed at 6.53 Å. Thermal analysis showed five endotherms at 70, 140, 238, 351 and 445°C. These endotherms are attributed to the dehydration and dehydroxylation of the boehmite-like hydrolysate. Raman spectroscopy shows the presence of bands for the washed hydrolysates at 333, 355, 414, 455, 475, 495, 530 and 675 cm–1. These bands are attributed to pseudoboehmite. Ageing of the hydrolysates results in an increase in the crystallite size of the pseudoboehmite.
Resumo:
The infrared (IR) spectroscopic data and Raman spectroscopic properties for a series of 13 “pinwheel-like” homoleptic bis(phthalocyaninato) rare earth complexes M[Pc(α-OC5H11)4]2 [M = Y and Pr–Lu except Pm; H2Pc(α-OC5H11)4 = 1,8,15,22-tetrakis(3-pentyloxy)phthalocyanine] have been collected and comparatively studied. Both the IR and Raman spectra for M[Pc(α-OC5H11)4]2 are more complicated than those of homoleptic bis(phthalocyaninato) rare earth analogues, namely M(Pc)2 and M[Pc(OC8H17)8]2, but resemble (for IR) or are a bit more complicated (for Raman) than those of heteroleptic counterparts M(Pc)[Pc(α-OC5H11)4], revealing the decreased molecular symmetry of these double-decker compounds, namely S8. Except for the obvious splitting of the isoindole breathing band at 1110–1123 cm−1, the IR spectra of M[Pc(α-OC5H11)4]2 are quite similar to those of corresponding M(Pc)[Pc(α-OC5H11)4] and therefore are similarly assigned. With laser excitation at 633 nm, Raman bands derived from isoindole ring and aza stretchings in the range of 1300–1600 cm−1 are selectively intensified. The IR spectra reveal that the frequencies of pyrrole stretching and pyrrole stretching coupled with the symmetrical CH bending of –CH3 groups are sensitive to the rare earth ionic size, while the Raman technique shows that the bands due to the isoindole stretchings and the coupled pyrrole and aza stretchings are similarly affected. Nevertheless, the phthalocyanine monoanion radical Pc′− IR marker band of bis(phthalocyaninato) complexes involving the same rare earth ion is found to shift to lower energy in the order M(Pc)2 > M(Pc)[Pc(α-OC5H11)4] > M[Pc(α-OC5H11)4]2, revealing the weakened π–π interaction between the two phthalocyanine rings in the same order.
Resumo:
Kaolinite surfaces were modified by mechanochemical treatment for periods of time up to 10 h. X-ray diffraction shows a steady decrease in intensity of the d(001) spacing with mechanochemical treatment, resulting in the delamination of the kaolinite and a subsequent decrease in crystallite size with grinding time. Thermogravimetric analyses show the dehydroxylation patterns of kaolinite are significantly modified. Changes in the molecular structure of the kaolinite surface hydroxyls were followed by infrared spectroscopy. Hydroxyls were lost after 10 h of grinding as evidenced by a decrease in intensity of the OH stretching vibrations at 3695 and 3619 cm−1 and the deformation modes at 937 and 915 cm−1. Concomitantly an increase in the hydroxyl stretching vibrations of water is found. The water-bending mode was observed at 1650 cm−1, indicating that water is coordinating to the modified kaolinite surface. Changes in the surface structure of the OSiO units were reflected in the SiO stretching and OSiO bending vibrations. The decrease in intensity of the 1056 and 1034 cm−1 bands attributed to kaolinite SiO stretching vibrations were concomitantly matched by the increase in intensity of additional bands at 1113 and 520 cm−1 ascribed to the new mechanically synthesized kaolinite surface. Mechanochemical treatment of the kaolinite results in a new surface structure.
Resumo:
The effect of mechanochemical activation upon the intercalation of formamide into a high-defect kaolinite has been studied using a combination of X-ray diffraction, thermal analysis, and DRIFT spectroscopy. X-ray diffraction shows that the intensity of the d(001) spacing decreases with grinding time and that the intercalated high-defect kaolinite expands to 10.2 A. The intensity of the peak of the expanded phase of the formamide-intercalated kaolinite decreases with grinding time. Thermal analysis reveals that the evolution temperature of the adsorbed formamide and loss of the inserting molecule increases with increased grinding time. The temperature of the dehydroxylation of the formamide-intercalated high-defect kaolinite decreases from 495 to 470oC with mechanochemical activation. Changes in the surface structure of the mechanochemically activated formamide-intercalated high-defect kaolinite were followed by DRIFT spectroscopy. Fundamentally the intensity of the high-defect kaolinite hydroxyl stretching bands decreases exponentially with grinding time and simultaneously the intensity of the bands attributed to the OH stretching vibrations of water increased. It is proposed that the mechanochemical activation of the high-defect kaolinite caused the conversion of the hydroxyls to water which coordinates the kaolinite surface. Significant changes in the infrared bands assigned to the hydroxyl deformation and amide stretching and bending modes were observed. The intensity decrease of these bands was exponentially related to the grinding time. The position of the amide C&unknown;O vibrational mode was found to be sensitive to grinding time. The effect of mechanochemical activation of the high-defect kaolinite reduces the capacity of the kaolinite to be intercalated with formamide.
Resumo:
In this article, the author discusses how she applied autoethnography in a study of the design of hypermedia educational resources and shows how she addressed problematic issues related to autoethnographic legitimacy and representation. The study covered a 6-year period during which the practitioner’s perspective on the internal and external factors influencing the creation of three hypermedia CD-ROMs contributed to an emerging theory of design. The author highlights the interrelationship between perception and reality as vital to qualitative approaches and encourages researchers to investigate their reality more fully by practicing the art of autoethnography.
Resumo:
A new method for estimating the time to colonization of Methicillin-resistant Staphylococcus Aureus (MRSA) patients is developed in this paper. The time to colonization of MRSA is modelled using a Bayesian smoothing approach for the hazard function. There are two prior models discussed in this paper: the first difference prior and the second difference prior. The second difference prior model gives smoother estimates of the hazard functions and, when applied to data from an intensive care unit (ICU), clearly shows increasing hazard up to day 13, then a decreasing hazard. The results clearly demonstrate that the hazard is not constant and provide a useful quantification of the effect of length of stay on the risk of MRSA colonization which provides useful insight.
Resumo:
We generalize the classical notion of Vapnik–Chernovenkis (VC) dimension to ordinal VC-dimension, in the context of logical learning paradigms. Logical learning paradigms encompass the numerical learning paradigms commonly studied in Inductive Inference. A logical learning paradigm is defined as a set W of structures over some vocabulary, and a set D of first-order formulas that represent data. The sets of models of ϕ in W, where ϕ varies over D, generate a natural topology W over W. We show that if D is closed under boolean operators, then the notion of ordinal VC-dimension offers a perfect characterization for the problem of predicting the truth of the members of D in a member of W, with an ordinal bound on the number of mistakes. This shows that the notion of VC-dimension has a natural interpretation in Inductive Inference, when cast into a logical setting. We also study the relationships between predictive complexity, selective complexity—a variation on predictive complexity—and mind change complexity. The assumptions that D is closed under boolean operators and that W is compact often play a crucial role to establish connections between these concepts. We then consider a computable setting with effective versions of the complexity measures, and show that the equivalence between ordinal VC-dimension and predictive complexity fails. More precisely, we prove that the effective ordinal VC-dimension of a paradigm can be defined when all other effective notions of complexity are undefined. On a better note, when W is compact, all effective notions of complexity are defined, though they are not related as in the noncomputable version of the framework.
Resumo:
The Raman spectra of both low- and high-defect kaolinites in the hydroxyl stretching and low-wavenumber region were obtained with excitation at three visible wavelengths of 633, 514 and 442 nm and a UV wavelength of 325 nm. The UV-excited spectra were comparable to those excited by the visible wavelengths. The Raman spectra show hydroxyl stretching bands at 3621 cm-1 attributed to the inner hydroxyl, at 3692 and 3684 cm-1 attributed to the longitudinal and transverse optic modes of the inner surface hydroxyls and at 3668 and 3653 cm-1 assigned to the out-of phase vibrations of the inner surface hydroxyls. Two bands were observed in the spectral profile at 3695 cm-1 for the high-defect kaolinite at 3698 and 3691 cm-1 and were assigned to TO/LO splitting. An increase in relative intensity of the transverse optic mode is observed with decrease in laser wavelength. The intensity of the out-of-phase vibrations at 3668 and 3653 cm-1 of the inner surface hydroxyls shows a linear relationship with the longitudinal and transverse optic modes. In the low-wavenumber region excellent correlation was found between the experimentally determined and the calculated band positions.