343 resultados para Microfossils
Resumo:
Leg 92 of the Deep Sea Drilling Project cored sediments containing calcareous microfossils at six sites along 19°S latitude in the South Pacific Ocean. Shipboard examination of these sediments revealed planktonic foraminifers of uppermost Oligocene through Pleistocene age that were identified and assigned to biostratigraphic zones according to the tropical zonation scheme of Blow (1969). Preservation of planktonic foraminifers in the sites from Leg 92 has been affected by the position of each site with respect to the lysocline and calcium carbonate compensation depth (CCD) at the time of deposition, depth of burial, and sediment accumulation rate (rate of burial). An additional factor may also be important, especially in the sediments deposited immediately above basement. Evidence of poor preservation in basal sediments of Holes 600C and 601, which have always been shallower than both the lysocline and the CCD, suggests that hydrothermal solutions circulating within young oceanic crust may penetrate the overlying sediments and affect the preservation of calcareous microfossils deposited there.
Resumo:
Site 1143 is located at 9°21.72'N, 113°17.11'E, at a water depth of 2772 m within a basin on the southern continental margin of the South China Sea. Three holes were cored at the site and combined into a composite (spliced) stratigraphic section that documents complete recovery for the upper 190.85 meters composite depth, the interval of advanced piston coring (Wang, Prell, Blum, et al., 2000, doi:10.2973/odp.proc.ir.184.2000; Wang et al., 2001, doi:10.1007/BF02907085). The early Pliocene to Holocene sediment sequence provided abundant and well-preserved calcareous microfossils and offered an excellent opportunity to establish foraminiferal stable isotope records. Here, we present benthic and planktonic d18O and d13C records that cover the last 5 m.y. These data sets will provide an important basis for upcoming studies to generate an orbitally tuned oxygen isotope stratigraphy and examine long- and short-term changes in deep and surface water mass signatures (temperature, salinity, and nutrients) with an average sample spacing of ~2.9 k.y. for the benthic and ~2.6 k.y. for the planktonic records.
Resumo:
A detailed study of chemical composition of bottom sediments along a profile through the Northwest Pacific Basin has allowed to identify and describe four lithofacies types of bottom sediments. Distinguished types of sediments form a genetic series reflecting changing conditions of sedimentation from near-shore to central regions of the ocean. Along the strike of pelagic clays a gradual transition from ash containing clays to zeolite containing clays is established. Ash particles and zeolites have similar forms of occurrence. Together with other data it suggests that zeolites have been formed by diagenetic transformation of rhyolitic glass. Regular changes of CaCO3, amorphous SiO2, Fe and Mn contents in bottom sediments from the coast to the pelagic zone are shown.