939 resultados para Microcystis aeruginosa
Resumo:
An in vitro method of determining the activity of antibiotics in combination which is simple and convenient to perform and which could be used routinely in clinical microbiology laboratories is desirable. We investigated the activity, against Pseudomonas aeruginosa and Burkholderia cepacia complex clinical isolates, of ceftazidime and tobramycin in combination using a broth macrodilution sensitivity method based on breakpoint minimum inhibitory concentrations and compared the results obtained using this method with those obtained using the microtitre checkerboard method. There was good agreement in interpretation of results between the two methods for both P. aeruginosa (90%) and B. cepacia complex isolates (70%) with tobramycin and for P. aeruginosa isolates (70%) with ceftazidime. As the breakpoint combination sensitivity testing method employs only four tubes and does not require initial determination of individual antibiotic minimum inhibitory concentrations, it is simpler and more convenient for determining the activity of antibiotics in combination than the microtitre checkerboard method. The use of this method in routine microbiology laboratories to determine the activity of antibiotic combinations against clinical isolates should optimise treatment of infection by ensuring that appropriate antibiotic combinations are prescribed. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A colorimetric assay based on the reduction of a tetrazolium salt {2,3-bis[2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide (XTT)} for rapidly determining the susceptibility of Pseudomonas aeruginosa isolates to bactericidal antibiotics is described. There was excellent agreement between the tobramycin and ofloxacin MICs determined after 5 h using the XTT assay and after 18 h using conventional methods. The data suggests that an XTT-based assay could provide a useful method for rapidly determining the susceptibility of P. aeruginosa to bactericidal antibiotics.
Resumo:
The "phiKMV-like viruses" comprise an important genus of T7 related phages infecting Pseudomonas aeruginosa. The genomes of these bacteriophages have localized single-strand interruptions (nicks), a distinguishing genomic trait previously thought to be unique for T5 related coliphages. Analysis of this feature in the newly sequenced phage fkF77 shows all four nicks to be localized on the non-coding DNA strand. They are present with high frequencies within the phage population and are introduced into the phage DNA at late stages of the lytic cycle. The general consensus sequence in the nicks (5'-CGACxxxxxCCTAoh pCTCCGG-3') was shown to be common among all phiKMV-related phages.
Resumo:
Background: Pulmonary exacerbations (PEx) are responsible for much of the morbidity and mortality associated with cystic fibrosis (CF). However, there is a paucity of data on outcomes in CF PEx and factors influencing outcomes.
Methods: We reviewed all PEx in patients infected with Pseudomonas aeruginosa treated with parenteral antibiotics over 4 years at our center. Treatment failures were categorized a priori as those PEx requiring antibiotic regimen change, prolongation of therapy > 20 days because of failure to respond, an early recurrent event within < 45 days, or failure to recover lung function to > 90% of baseline FEV1.
Results: A total of 101 patients were followed for 452 PEx. Treatment failures were observed in 125 (28%) of PEx; antibiotic regimen change was observed in 27 (6%), prolongation of therapy in 29 (6%), early recurrent events in 63 (14%), and failure to recover lung function to > 90% of baseline FEV1 in 66 (15%). Demographic factors associated with one or more treatment failures per year included advanced airways disease, use of enteric feeds, CF-related diabetes, and CF liver disease but did not include female sex or F508del homozygosity. Increased treatment failure risk was associated with lower admission FEV1 and increased markers of inflammation. At therapeutic completion, increased inflammatory markers correlated with treatment failure. Failure rates decreased with increasing number of active antimicrobial agents used based on in vitro susceptibility (zero, 28/65 [43%]; one, 38/140 [27%]; two, 59/245 [24%]; three, 0/2 [0%]; P = .02).
Conclusions: One-fourth of PEx fail to respond adequately to initial management. Patient demographic and episode-specific clinical information can be used to identify individuals at increased risk of initial management failure.
Resumo:
Pseudomonas elastase (LasB), a metalloprotease virulence factor, is known to play a pivotal role in pseudomonal infection. LasB is secreted at the site of infection, where it exerts a proteolytic action that spans from broad tissue destruction to subtle action on components of the host immune system. The former enhances invasiveness by liberating nutrients for continued growth, while the latter exerts an immunomodulatory effect, manipulating the normal immune response. In addition to the extracellular effects of secreted LasB, it also acts within the bacterial cell to trigger the intracellular pathway that initiates growth as a bacterial bio?lm. The key role of LasB in pseudomonal virulence makes it a potential target for the development of an inhibitor as an antimicrobial agent. The concept of inhibition of virulence is a recently established antimicrobial strategy, and such agents have been termed “second-generation” antibiotics. This approach holds promise in that it seeks to attenuate virulence processes without bactericidal action and, hence, without selection pressure for the emergence of resistant strains. A potent inhibitor of LasB,N-mercaptoacetyl-Phe-Tyr-amide (Ki 41 nM) has been developed, and its ability to block these virulence processes has been assessed. It has been demonstrated that thes compound can completely block the action of LasB on protein targets that are instrumental in bio?lm formation and immunomodulation. The novel LasB inhibitor has also been employed in bacterial-cell-based assays, to reduce the growth of pseudomonal bio?lms, and to eradicate bio?lm completely when used in combination with conventional antibiotics.
Resumo:
The metalloproteases ZapA of Proteus mirabilis and LasB of Pseudomonas aeruginosa are known to be virulence factors their respective opportunistic bacterial pathogens, and are members of the structurally related serralysin and thermolysin families of bacterial metalloproteases respectively. Secreted at the site of infection, these proteases play a key role in the infection process, contributing to tissue destruction and processing of components of the host immune system. Inhibition of these virulence factors may therefore represent an antimicrobial strategy, attenuating the virulence of the infecting pathogen. Previously we have screened a library of N-alpha mercaptoamide dipeptide inhibitors against both ZapA and LasB, with the aim of mapping the S1' binding site of the enzymes, revealing both striking similarities and important differences in their binding preferences. Here we report the design, synthesis, and screening of several inhibitor analogues, based on two parent inhibitors from the original library. The results have allowed for further characterization of the ZapA and LasB active site binding pockets, and have highlighted the possibility for development of broad-spectrum bacterial protease inhibitors, effective against enzymes of the thermolysin and serralysin metalloprotease families.
Resumo:
Gentamicin is an aminoglycoside antibiotic commonly used for treating Pseudomonas infections, but its use is limited by a relatively short half-life. In this investigation, developed a controlled-release gentamicin formulation using poly(lactide-co-glycolide) (PLGA) nanoparticles. We demonstrate that entrapment of the hydrophilic drug into a hydrophobic PLGA polymer can be improved by increasing the pH of the formulation, reducing the hydrophilicity of the drug and thus enhancing entrapment, achieving levels of up to 22.4 µg/mg PLGA. Under standard incubation conditions, these particles exhibited controlled release of gentamicin for up to 16 days. These particles were tested against both planktonic and biofilm cultures of P. aeruginosa PA01 in vitro, as well as in a 96-hour peritoneal murine infection model. In this model, the particles elicited significantly improved antimicrobial effects as determined by lower plasma and peritoneal lavage colony-forming units and corresponding reductions of the surrogate inflammatory indicators interleukin-6 and myeloperoxidase compared to free drug administration by 96 hours. These data highlight that the controlled release of gentamicin may be applicable for treating Pseudomonas infections.