989 resultados para Methanol.
Resumo:
The adsorption behavior of methanol, ethanol, n-butanol, n-hexanol and n-octanol on mica surface was investigated by atomic force microscopy. All these alcohols have formed homogeneous films with different characteristics. Upright standing bilayer structure was formed on methanol adsorbed mica surface. For ethanol, bilayer structure and monolayer one were simultaneously formed, while for n-butanol and n-hexanol, rough films were observed. What was formed for n-octanol? Close-packed flat film was observed on n-octanol adsorbed mica substrate, the film was assumed to be a tilted monolayer. The possible adsorption model for each alcohol molecule was proposed according to its adsorption behavior.
Resumo:
ZnO nanowires, nanorods and nanoparticles through modulating the ratio of water to methanol have been synthesized by using a mild and simple solution method. The as-prepared ZnO nanostructures have been characterized by atomic force microscopy and X-ray photoelectron spectroscopy. With the increase of the ratio of water to methanol, the morphology of ZnO nanostructures varied form denser nanowires, to sparse nanowires, to nanorods, and then to nanoparticles. The ratio of water to methanol is supposed to play an important role in the formation of ZnO nanostructures. The mechanism of formation is related to the chemical potential, which is simply proportional to their surface ratio.
Resumo:
The poisonous intermediate of methanol oxidation on a Pt electrode was validated to be COad by electrochemical method. An approximate treatment to bimolecular elementary reactions on an electrode was advanced and then was applied to the stripping normal pulse voltammetry (NPV) for complex multistep multielectron transfer processes on plane electrodes to study the kinetics of completely irreversible process Of COad oxidation to CO2. The kinetic parameters for this process, such as standard rate constant (0) and anodic transfer coefficient (alpha) for this irreversible heterogeneous electron-transfer process at electrode/solution interface and apparent diffusion coefficient (D-app) for charge-transfer process within the monolayer of COad on electrode surface, were obtained with stripping NPV method. The effect of the approximate treatment on the kinetic parameters was also analyzed.
Resumo:
A novel method was developed to prepare the highly active Pt-Ru-P/C catalyst. The deposition of phosphorus significantly increased electrochemical active surface (EAS) area of catalyst by reduces Pt-Ru particle size. TEM images show that Pt-Ru-P nanoparticles have an uniform size distribution with an average diameter of 2 nm. Cyclic voltammetry (CV), Chronoamperometry (CA), and CO stripping indicate that the presence of non-metal phosphorus as an interstitial species Pt-Ru-P/C catalyst shows high activity for the electro-oxidation of methanol, and exhibit enhanced performance in the oxidation of carbon monoxide compared with Pt-Ru/C catalyst. At 30 degrees C and pure oxygen was fed to the cathode, the maximum power density of direct methanol fuel cell (DMFC) with Pt-Ru-P/C and Pt-Ru/C catalysts as anode catalysts was 61.5 mW cm(-2) and 36.6 mW cm(-2), respectively. All experimental results indicate that Pt-Ru-P/C catalyst was the optimum anode catalyst for direct methanol fuel cell.
Resumo:
The synthesis and characterization of catalysts based on bimetallic materials, Pt-Fe supported on multi-walled carbon nanotubes (MWNTs) for methanol electrooxidation is reported here. The catalyst was prepared by a spray-cooling process and characterized by TEM, EDS, ICP and XRD. The electrocatalytic properties of the Pt-Fe/MWNTs electrode for methanol oxidation have been investigated by cyclic voltammetry and chronoamperometry. It presented higher electrocatalytic activity and stability than a comparative Pt/ MWNTs catalyst. This may be attributed to the addition of Fe which leads to the small average particle size and high utilization of Pt in the Pt-Fe/MWNTs catalyst. The results imply that the Pt Fe/MWNTs composite has good potential applications in fuel cells.
Resumo:
The organic sol method for preparing ultrafine transition metal colloid particles reported for the first time by Bonnemann et al. [H. Bonnemann, W Brijoux, R. Brinkmann, E. Dinjus, T. Jou beta en, B. Korall, Angew. Chem. Int. Ed. Engl., 30 (1991) 1312] has been improved in this paper. The improved organic sol method uses SnCl2 as the reductant and methanol as the organic solvent. Thus, this method is very simple and inexpensive. It was found that the average size of the Pt particles in the Pt/C catalysts can be controlled by adjusting the evaporating temperature of the solvent. Therefore, the Pt/C catalysts prepared by the same method are suitable for evaluating the size effect of the Pt particles on electrocatalytic performance for methanol oxidation. The results of the X-ray diffraction (XRD) and transmission electron microscopy (TEM) showed that when the evaporating temperatures of the solvent are 65, 60, 50, 40, and 30 degrees C, the average sizes of the Pt particles in the Pt/C catalysts prepared are: 2.2, 3.2, 3.8, 4.3, and 4.8 nm, respectively. The X-ray photoelectron spectroscopic (XPS) results demonstrated that the small Pt particles are easily oxidized and the decomposition/adsorption of methanol cannot proceed on the surfaces of Pt oxides.
Resumo:
Polypyrrole (Ppy) was successfully introduced into methyl substituted sulfonated poly(ether ether ketone) (SPEEK) membranes by polymerization in SPEEK solutions to improve their methanol resistance. Uniform polypyrrole (Ppy) distributed composite membranes were formed by this method by the interaction between SPEEK and Ppy. The properties of the composite membranes were characterized in detail. The composite membranes show very good proton conductive capability (25 degrees C: 0.05-0.06s cm(-1)) and good methanol resistance (25 degrees C: 5.3 x 10(-7) 1.1 x 10(-6) cm(2) s(-1)). The methanol diffusion coefficients of composite membranes are much lower than that of pure SPEEK membranes (1.5 x 10(-6) cm(2) s(-1)). The composite membranes show very good potential usage in direct methanol fuel cells (DMFCs).
Resumo:
The effect of metal cations in solution on the oxidation of methanol on the electrode surface of platinum is a neglected aspect to direct methanol fuel cell (DMFC). In this paper, a smooth platinum electrode absorbing metal cations as the working electrode was applied to investigate the methanol oxidation with the cyclic voltammetry (CV) in 1.0 mol L-1 H2SO4. From the analysis of experiment, it is found that the cations, Li+, Ce4+, Mn2+, Ni2+, Cu2+, have some negative effect on the catalytic oxidation of methanol on the surface of platinum. The degree of the effect from different cations was analyzed.
Resumo:
An additional anode catalyst layer with PtRu/C was hot pressed between two Nafion (R) 112 membranes and a conventional direct methanol fuel cell (DMFC) cathode/membrane/anode assembly with the above membranes as separator was fabricated. The additional catalyst layer formed an assistant cell with the cathode to prevent methanol crossover. A simple one-dimensional mathematical model was presented to describe the performance of this new type of membrane electrode assembly system. As seen from both experimental result and model analysis, the additional catalyst layer can not only effectively prevent the methanol crossover, but also generate electrical power with the crossover methanol. The percentage of output power of the assistant cell to the total power analyzed by the model is about 40% under usual condition, which is much higher than that from experimental result, indicating the potential of the development in the DMFC designing. It was also discovered that the electrical power generated from the assistant cell with crossover methanol could take higher percentage in total electrical power when the main DMFC current density became lower.
Resumo:
In this paper, it was reported that the carbon-supported Pt-Ru(Pt-Ru/C) catalyst used as the anodic catalyst in the direct methanol fuel cell (DMFC) was synthesized with a two-step spray pyrolysis (SP) method using the Pt and Ru metal salt as the precursors and polyethylene glycol (PEG) with the different molecular weights (Mw= 200,600,and 1000 analytical reagent) as cosolvent. PEG as a cosolvent plays a crucial role in producing PtRu/C catalysts. It was found that the Mw of PEG could affect the electrocatalytic activity of Pt-Ru and the morphology of the Pt-Ru particles in the Pt-Ru/C catalysts prepared with this method. When the Mw of PEG is 600, the Pt-Ru particles in the Pt-Ru/C catalyst prepared with this method possess the small average size, narrow size distribution, uniform dispersion, and high electrochemically active specific surface area. The electrocatalytic activity of the Pt-Ru/C catalyst prepared with this method using the cosolvent PEG with Mw = 600 for the methanol oxidation is much higher than that of the commercial E-TEK Pt-Ru/C catalyst. Therefore, the two-step SP method is an excellent method for the preparation of the Pt-Ru/C catalyst used in DMFCs.