987 resultados para Metabotropic glutamate receptor


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Early network oscillations and spindle bursts are typical patterns of spontaneous rhythmic activity in cortical networks of neonatal rodents in vivo and in vitro. The latter can also be triggered in vivo by stimulation of afferent inputs. The mechanisms underlying such oscillations undergo profound developmental changes in the first postnatal weeks. Their possible role in cortical development is postulated but not known in detail. We have studied spontaneous and evoked patterns of activity in organotypic cultures of slices from neonatal rat cortex grown on multielectrode arrays (MEAs) for extracellular single- and multi-unit recording. Episodes of spontaneous spike discharge oscillations at 7 - 25 Hz lasting for 0.6 - 3 seconds appeared in about half of these cultures spontaneously and could be triggered by electrical stimulation of few distinct electrodes. These oscillations usually covered only restricted areas of the slices. Besides oscillations, single population bursts that spread in a wavelike manner over the whole slice also appeared spontaneously and were triggered by electrical stimulation. In most but not all cultures, population bursts preceded the oscillations. Both population bursts and spike discharge oscillations required intact glutamatergic synaptic transmission since they were suppressed by the AMPA/kainate glutamate receptor antagonist CNQX. The NMDA antagonist d-APV suppressed the oscillations but not the population bursts, suggesting an involvement of NMDA receptors in the oscillations. These findings show that spindle burst like cortical rhythms are reproduced in organotypic cultures of neonatal cortex. The culture model thus allows investigating the role of such rhythms in cortical circuit formation. Supported by SNF grant No. 3100A0-107641/1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization- and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide-gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Olfactory glomeruli are the loci where the first odor-representation map emerges. The glomerular layer comprises exquisite local synaptic circuits for the processing of olfactory coding patterns immediately after their emergence. To understand how an odor map is transferred from afferent terminals to postsynaptic dendrites, it is essential to directly monitor the odor-evoked glomerular postsynaptic activity patterns. Here we report the use of a transgenic mouse expressing a Ca(2+)-sensitive green fluorescence protein (GCaMP2) under a Kv3.1 potassium-channel promoter. Immunostaining revealed that GCaMP2 was specifically expressed in mitral and tufted cells and a subpopulation of juxtaglomerular cells but not in olfactory nerve terminals. Both in vitro and in vivo imaging combined with glutamate receptor pharmacology confirmed that odor maps reported by GCaMP2 were of a postsynaptic origin. These mice thus provided an unprecedented opportunity to analyze the spatial activity pattern reflecting purely postsynaptic olfactory codes. The odor-evoked GCaMP2 signal had both focal and diffuse spatial components. The focalized hot spots corresponded to individually activated glomeruli. In GCaMP2-reported postsynaptic odor maps, different odorants activated distinct but overlapping sets of glomeruli. Increasing odor concentration increased both individual glomerular response amplitude and the total number of activated glomeruli. Furthermore, the GCaMP2 response displayed a fast time course that enabled us to analyze the temporal dynamics of odor maps over consecutive sniff cycles. In summary, with cell-specific targeting of a genetically encoded Ca(2+) indicator, we have successfully isolated and characterized an intermediate level of odor representation between olfactory nerve input and principal mitral/tufted cell output.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This dissertation presents structural, immunochemical and neurochemical evidence for glutamatergic retinotectal synaptic transmission, augmenting and extending previous physiological and anatomical studies. The evidence is especially striking when the laminar patterns of ($\sp3$H) L-glutamate receptor binding, ($\sp3$H) L-glutamate high affinity uptake (HAU) and glutamate immunoreactivity (GLIR) of the dorsal tectum are compared. All show high activity in the tectal SGFS, with a peak in the most superficial laminae of SGFS followed by dip in the b-c region, and a second broad peak in deeper SGFS. Uptake and immunoreactivity bear a stronger resemblance to one another than either does to receptor binding, consistent with the fact that HAU and GLIR are localized in the same structures: glutamatergic terminals, intrinsic cell bodies and their processes. Receptor binding, as attested by the lack of enucleation effects, is a marker of postsynaptic receptors. In summary, these results are consistent with the hypothesis that most of the retinal projection to the optic tectum is glutamatergic: (1) A glutamate/aspartate HAU system exists in the superficial laminae, and it is dependent upon an intact retinal input, as shown developmentally and by retinal ablation; (2) Glutamate-like immunoreactivity appears in retinorecipient tectal regions (partially responsive to enucleation), in cell bodies of retinal ganglion cells and displaced ganglion cells, and in a non-tectal ganglion cell projection, the ectomammilary nucleus; (3) Sodium-independent glutamate receptor binding (which remains unchanged by enucleation) is most intense in the retinorecipient regions of the tectum and the ectomammilary nucleus. This binding is pharmacologically typical of a CNS sensory structure, being dominated by the quisqualate/kainate receptor subclass. Thus, as with other sensory systems, a portion of the retinotectal projection has been shown to include glutamatergic afferents with the distribution and properties expected of the primary projection ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cholinergic amacrine cells of the rabbit retinal are the only neurons which accumulate choline and also synthesize acetylcholine (ACh). It is widely accepted that the physiologically evoked release of acetylcholine can be taken as a measure of the activity of the entire cholinergic population. Initially, we examined the possibility that these cells receive excitatory input via glutamate receptors from glutamatergic neurons. Glutamate analogs were found to cause massive ACh release from the rabbit retina. Glutamate was found to activate several different receptor subtypes. Selective glutamate antagonists were used to separate the responses evoked by the different glutamate receptor subtypes. The kainate receptor was determined pharmacologically to be the subtype activated physiologically. Since bipolar cells make direct contact with cholinergic amacrine cells, our results support the hypothesis the bipolar cell neurotransmitter is glutamate. Although NMDA receptors can be activated by NMDA analogs, they are not activated during the physiologically evoked release of ACh. A separate study examined the possibility that L-homocysteate could be the bipolar cell neurotransmitter and the results placed serious constraints on this possibility.^ GABA$\sb{\rm A}$ agonists and antagonists are known to have powerful effects on ACh release from the rabbit retina. By pharmacologically blocking the excitatory input from bipolar cells, we attempted to determine the site of GABA$\sb{\rm A}$ input. Our results suggest that the predominant site of GABA$\sb{\rm A}$ input is onto the bipolar cells presynaptic to cholinergic amacrine cells. In a separate study, we found SR-95531 to be a potent and selective GABA$\sb{\rm A}$ receptor antagonist. In addition, GABA$\sb{\rm B}$ agonists and antagonists were found to have minor or no effects on ACh release. Glycine was also examined, its inhibitory effects were found to be very similar to GABA$\sb{\rm A}$ agonists. In contrast, strychnine was found to increase basal but inhibit light evoked ACh release. Additional results indicated that the predominant site of glycinergic input is onto the presynaptic bipolar cells. Our results suggest a different role for glycine compared to GABA in shaping the light evoked release of ACh from the rabbit retina. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reelin is an extracellular matrix glycoprotein expressed in different nerve cell populations in the developing, early postnatal and adult central nervous system. During histogenesis of the neocortex and hippocampus, reelin is present in Cajal-Retzius cells and other early neurons and contributes to correct layering of these regions. During early postnatal life, pioneer neurons disappear and reelin expression establishes in a subpopulation of cortical and hippocampal GABAergic interneurons, where it is maintained throughout adult life. We studied the developmental distribution pattern of reelin in dissociated cultures obtained from the early postnatal hippocampus to verify whether or not such a maturation phenomenon is maintained in vitro. Reelin is expressed both in Cajal-Retzius cells and multipolar and pyramidal neurons in younger cultures. The density of reelin-positive Cajal-Retzius cells dropped drastically by about 84% in 4-week-old cultures. Multipolar and pyramidal neurons containing reelin represented 12% of the total cell population in younger cultures and decreased by about 25% after 3 to 4 weeks of cultivation. Their density was significantly lower in cultures of the same age treated with glutamate receptor antagonists. These reelin-positive multipolar and pyramidal neurons were heterogeneous, including a larger amount of non-GABAergic, and 30-40% of GABAergic neurons. Cells double labeled for reelin and the GABA synthesizing enzyme glutamic acid decarboxylase represented about 4% of the total neuron population in culture and their density remained constant with age. It is thus possible that the decrease in the total reelin population may selectively be of importance to the larger non-GABAergic fraction of reelin cells. This study shows that reelin-expressing neurons are maintained in dissociated cultures of the neonatal hippocampus and their distribution and age-dependent changes in density resemble those of the early postnatal hippocampus in vivo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Amyotrophic lateral sclerosis (ALS) is an adult onset progressive motor neuron disease with no cure. Transgenic mice overexpressing familial ALS associated human mutant SOD1 are a commonly used model for examining disease mechanisms. Presently, it is well accepted that alterations in motor neuron excitability and spinal circuits are pathological hallmarks of ALS, but the underlying molecular mechanisms remain unresolved. Here, we sought to understand whether the expression of mutant SOD1 protein could contribute to altering processes governing motor neuron excitability. We used the conformation specific antibody B8H10 which recognizes a misfolded state of SOD1 (misfSOD1) to longitudinally identify its interactome during early disease stage in SOD1G93A mice. This strategy identified a direct isozyme-specific association of misfSOD1 with Na+/K+ATPase-α3 leading to the premature impairment of its ATPase activity. Pharmacological inhibition of Na+/K+ATPase-α3 altered glutamate receptor 2 expression, modified cholinergic inputs and accelerated disease pathology. After mapping the site of direct association of misfSOD1 with Na+/K+ATPase-α3 onto a 10 amino acid stretch that is unique to Na+/K+ATPase-α3 but not found in the closely related Na+/K+ATPase-α1 isozyme, we generated a misfSOD1 binding deficient, but fully functional Na+/K+ATPase-α3 pump. Adeno associated virus (AAV)-mediated expression of this chimeric Na+/K+ATPase-α3 restored Na+/K+ATPase-α3 activity in the spinal cord, delayed pathological alterations and prolonged survival of SOD1G93A mice. Additionally, altered Na+/K+ATPase-α3 expression was observed in the spinal cord of individuals with sporadic and familial ALS. A fraction of sporadic ALS cases also presented B8H10 positive misfSOD1 immunoreactivity, suggesting that similar mechanism might contribute to the pathology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Retinitis pigmentosa (RP) is a genetically heterogeneous group of retinal degenerations that affects over one million people worldwide. To date, 11 autosomal dominant, 13 autosomal recessive, and 5 X-linked forms of retinitis pigmentosa have been identified through linkage analysis, but the disease-causing genes and mutations have been found for only half of these loci. My research uses a positional candidate cloning approach to identify the gene and mutations responsible for one type of autosomal dominant retinitis pigmentosa, RP10. The premise is that identifying the genes and mutations responsible for disease will provide insight into disease mechanisms and provide treatment options. Previous research mapped the RP10 locus to a 5cM region on chromosome 7q31 between markers D7S686 and D7S530. Linkage and fine-point haplotype analysis was used to reduce and refine the RP10 disease interval to a 4cM region located between D7S2471 and a new marker located 45,000bp telomeric of D7S461. In order to identify genes located in the RP10 interval, an extensive EST map was created of this region. Five EST clusters from this map were analyzed to determine if mutations in these genes cause the RP10 form of retinitis pigmentosa. The genomic structure of a known metabotrophic glutamate receptor, GRMS8, was determined first. DNA sequencing of GRM8 in RP10 family members did not identify any disease-causing mutations. Four other EST clusters (A170, A173, A189, and A258) were characterized and determined to be part of the same gene, UBNL1 (ubinuclein-like 1). The full-length mRNA sequence and genomic structure of UBNL1 was determined and then screened in patients. No disease-causing mutations were identified in any of the RP10 family members tested. Recent data made available with the release of the public and Celera genome assemblies indicates that UBNL1 is outside of the RP10 disease region. Despite this complication, characterization of UBNL1 is still important in the understanding of normal visual processes and it is possible that mutations in UBNL1 could cause other forms of retinopathy. The EST map and list of RP10 candidates will continue to aid others in the search for the RP10 gene and mutations. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The retina is a specialized neuronal structure that transforms the optical image into electrical signals which are transmitted to the brain via the optic nerve. As part of the strategy to cover a stimulus range as broad as 10 log units, from dim starlight to bright sunlight, retinal circuits are broadly divided into rod and cone pathways, responsible for dark and light-adapted vision, respectively. ^ In this dissertation, confocal microscopy and immunocytochemical methods were combined to study the synaptic connectivity of the rod pathway from the level of individual synapses to whole populations of neurons. The study was focused on synaptic interactions at the rod bipolar terminal. The purpose is to understand the synaptic structure of the dyad synapse made by rod bipolar terminals, including the synaptic components and connections, and their physiological functions in the rod pathway. In addition, some additional components and connections of the rod pathway were also studied in these experiments. The major results can be summarized as following: At the dyad synapse of rod bipolar terminals, three postsynaptic components—processes of All amacrine cells and the varicosities of S1 or S2 amacrine cells express different glutamate receptor subunits, which may underlie the functional diversity of these postsynaptic neurons. A reciprocal feedback system is formed by rod bipolar terminals and S1/S2 amacrine cells. Analysis showed these two wide-field GABA amacrine cells have stereotyped synaptic connections with the appropriate morphology and distribution to perform specific functions. In addition, S1 and S2 cells have different coupling patterns and, in general, there is no coupling between the two types. Besides the classic rod pathway though rod bipolar cells and All amacrine cells, the finding of direct connections between certain types of OFF cone bipolar cells and rods indicates the presence of an alternative rod pathway in the rabbit retina. ^ In summary, this dissertation presents a detailed view of the connection and receptors at rod bipolar terminals. Based on the morphology, distribution and coupling, different functional roles were identified for S1 and S2 amacrine cells. Finally, an alternative to the classic rod pathway was found in the rabbit retina. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Voltage-dependent Ca2+ currents evoke synaptic transmitter release. Of six types of Ca2+ channels, L-, N-, P-, Q-, R-, and T-type, only N- and P/Q-type channels have been pharmacologically identified to mediate action-potential-evoked transmitter release in the mammalian central nervous system. We tested whether Ca2+ channels other than N- and P/Q-type control transmitter release in a calyx-type synapse of the rat medial nucleus of the trapezoid body. Simultaneous recordings of presynaptic Ca2+ influx and the excitatory postsynaptic current evoked by a single action potential were made at single synapses. The R-type channel, a high-voltage-activated Ca2+ channel resistant to L-, N-, and P/Q-type channel blockers, contributed 26% of the total Ca2+ influx during a presynaptic action potential. This Ca2+ current evoked transmitter release sufficiently large to initiate an action potential in the postsynaptic neuron. The R-type current controlled release with a lower efficacy than other types of Ca2+ currents. Activation of metabotropic glutamate receptors and γ-aminobutyric acid type B receptors inhibited the R-type current. Because a significant fraction of presynaptic Ca2+ channels remains unidentified in many other central synapses, the R-type current also could contribute to evoked transmitter release in these synapses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aurintricarboxylic acid (ATA), an inhibitor of endonuclease activity and other protein–nucleic acid interactions, blocks apoptosis in several cell types and prevents delayed death of hippocampal pyramidal CA1 neurons induced by transient global ischemia. Global ischemia in rats and gerbils induces down-regulation of GluR2 mRNA and increased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-induced Ca2+ influx in CA1 before neurodegeneration. This result and neuroprotection by antagonists of AMPA receptors suggests that formation of AMPA receptors lacking GluR2, and therefore Ca2+ permeable, leads to excessive Ca2+ influx in response to endogenous glutamate; the resulting delayed neuronal death in CA1 exhibits many characteristics of apoptosis. In this study, we examined the effects of ATA on expression of mRNAs encoding glutamate receptor subunits in gerbil hippocampus after global ischemia. Administration of ATA by injection into the right cerebral ventricle 1 h before (but not 6 h after) bilateral carotid occlusion prevented the ischemia-induced decrease in GluR2 mRNA expression and the delayed neurodegeneration. These findings suggest that ATA is neuroprotective in ischemia by blocking the transcriptional changes leading to down-regulation of GluR2, rather than by simply blocking endonucleases, which presumably act later after Ca2+ influx initiates apoptosis. Maintaining formation of Ca2+ impermeable, GluR2 containing AMPA receptors could prevent delayed death of CA1 neurons after transient global ischemia, and block of GluR2 down-regulation may provide a further strategy for neuroprotection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

HIV infection often involves the development of AIDS-related dementia complex, a variety of neurologic, neuropsychologic, and neuropathologic impairments. A possible contributor to AIDS-related dementia complex is the HIV envelope glycoprotein gp120, which damages neurons via a complex glutamate receptor- and calcium-dependent cascade. We demonstrate an endocrine modulation of the deleterious effects of gp120 in primary hippocampal and cortical cultures. Specifically, we observe that gp120-induced calcium mobilization and neurotoxicity are exacerbated by glucocorticoids, the adrenal steroids secreted during stress. Importantly, this deleterious synergy can occur between gp120 and synthetic glucocorticoids (such as prednisone or dexamethasone) that are used clinically in high concentrations to treat severe cases of the Pneumocystis carinii pneumonia typical of HIV infection. Conversely, we also observe that estradiol protects neurons from the deleterious actions of gp120, reducing toxicity and calcium mobilization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In adult forebrain, nerve growth factor (NGF) influences neuronal maintenance and axon sprouting and is neuroprotective in several injury models through mechanisms that are incompletely understood. Most NGF signaling is thought to occur after internalization and retrograde transport of trkA receptor and be mediated through the nucleus. However, NGF expression in hippocampus is rapidly and sensitively regulated by synaptic activity, suggesting that NGF exerts local effects more dynamically than possible through signaling requiring retrograde transport to distant afferent neurons. Interactions have been reported between NGF and nitric oxide (NO). Because NO affects both neural plasticity and degeneration, and trk receptors can mediate signaling within minutes, we hypothesized that NGF might rapidly modulate NO production. Using in vivo microdialysis we measured conversion of l-[14C]arginine to l-[14C]citrulline as an accurate reflection of NO synthase (NOS) activity in adult rat hippocampus. NGF significantly reduced NOS activity to 61% of basal levels within 20 min of onset of delivery and maintained NOS activity at less than 50% of baseline throughout 3 hr of delivery. This effect did not occur with control protein (cytochrome c) and was not mediated by an effect of NGF on glutamate levels. In addition, simultaneous delivery of NGF prevented significant increases in NOS activity triggered by the glutamate receptor agonists N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Rapid suppression by NGF of basal and glutamate-stimulated NOS activity may regulate neuromodulatory functions of NO or protect neurons from NO toxicity and suggests a novel mechanism for rapidly mediating functions of NGF and other neurotrophins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The N-methyl-d-aspartate (NMDA) receptor is a principal subtype of glutamate receptor mediating fast excitatory transmission at synapses in the dorsal horn of the spinal cord and other regions of the central nervous system. NMDA receptors are crucial for the lasting enhancement of synaptic transmission that occurs both physiologically and in pathological conditions such as chronic pain. Over the past several years, evidence has accumulated indicating that the activity of NMDA receptors is regulated by the protein tyrosine kinase, Src. Recently it has been discovered that, by means of up-regulating NMDA receptor function, activation of Src mediates the induction of the lasting enhancement of excitatory transmission known as long-term potentiation in the CA1 region of the hippocampus. Also, Src has been found to amplify the up-regulation of NMDA receptor function that is produced by raising the intracellular concentration of sodium. Sodium concentration increases in neuronal dendrites during high levels of firing activity, which is precisely when Src becomes activated. Therefore, we propose that the boost in NMDA receptor function produced by the coincidence of activating Src and raising intracellular sodium may be important in physiological and pathophysiological enhancement of excitatory transmission in the dorsal horn of the spinal cord and elsewhere in the central nervous system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A specific set of molecules including glutamate receptors is targeted to the postsynaptic specialization of excitatory synapses in the brain, gathering in a structure known as the postsynaptic density (PSD). Synaptic targeting of glutamate receptors depends on interactions between the C-terminal tails of receptor subunits and specific PDZ domain-containing scaffold proteins in the PSD. These scaffold proteins assemble a specialized protein complex around each class of glutamate receptor that functions in signal transduction, cytoskeletal anchoring, and trafficking of the receptors. Among the glutamate receptor subtypes, the N-methyl-d-aspartate receptor is relatively stably integrated in the PSD, whereas the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor moves in and out of the postsynaptic membrane in highly dynamic fashion. The distinctive cell biological behaviors of N-methyl-d-aspartate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors can be explained by their differential interactions with cytoplasmic proteins.