966 resultados para Mesostructured SiO2
Resumo:
We have performed ab initio molecular dynamics simulations to generate an atomic structure model of amorphous hafnium oxide (a-HfO(2)) via a melt-and-quench scheme. This structure is analyzed via bond-angle and partial pair distribution functions. These results give a Hf-O average nearest-neighbor distance of 2.2 angstrom, which should be compared to the bulk value, which ranges from 1.96 to 2.54 angstrom. We have also investigated the neutral O vacancy and a substitutional Si impurity for various sites, as well as the amorphous phase of Hf(1-x)Si(x)O(2) for x=0.25, 0375, and 0.5.
Resumo:
The structure of laser glasses in the system (Y(2)O(3))(0.2){(Al(2)O(3))(x))(B(2)O(3))(0.8-x)} (0.15 <= x <= 0.40) has been investigated by means of (11)B, (27)Al, and (89)Y solid state NMR as well as electron spin echo envelope modulation (ESEEM) of Yb-doped samples. The latter technique has been applied for the first time to an aluminoborate glass system. (11)B magic-angle spinning (MAS)-NMR spectra reveal that, while the majority of the boron atoms are three-coordinated over the entire composition region, the fraction of three-coordinated boron atoms increases significantly with increasing x. Charge balance considerations as well as (11)B NMR lineshape analyses suggest that the dominant borate species are predominantly singly charged metaborate (BO(2/2)O(-)), doubly charged pyroborate (BO(1/2)(O(-))(2)), and (at x = 0.40) triply charged orthoborate groups. As x increases along this series, the average anionic charge per trigonal borate group increases from 1.38 to 2.91. (27)Al MAS-NMR spectra show that the alumina species are present in the coordination states four, five and six, and the fraction of four-coordinated Al increases markedly with increasing x. All of the Al coordination states are in intimate contact with both the three-and the four-coordinate boron species and vice versa, as indicated by (11)B/(27)Al rotational echo double resonance (REDOR) data. These results are consistent with the formation of a homogeneous, non-segregated glass structure. (89)Y solid state NMR spectra show a significant chemical shift trend, reflecting that the second coordination sphere becomes increasingly ""aluminate-like'' with increasing x. This conclusion is supported by electron spin echo envelope modulation (ESEEM) data of Yb-doped glasses, which indicate that both borate and aluminate species participate in the medium range structure of the rare-earth ions, consistent with a random spatial distribution of the glass components.
Resumo:
Yttria stabilized tetragonal zirconia (Y-TZP) ceramics were sintered by liquid phase sintering at low temperatures using bioglass as sintering additive. ZrO2-bioglass ceramics were prepared by mixing a ZrO2 stabilized with 3 Mol%Y2O3 and different amounts of bioglass based on 3CaO center dot P2O5-MgO-SiO2 system. Mixtures were compacted by uniaxial cold pressing and sintered in air, at 1200 and 1300 degrees C for 120 min. The influence of the bioglass content on the densification, tetragonal phase stability, bending strength, hardness and fracture toughness was investigated. The ceramics sintered at 1300 degrees C and prepared by addition of 3% of bioglass, exhibited the highest strength of 435 MPa, hardness of 1170 HV and fracture toughness of 6.3 MPa m(1/2). These results are related to the low monoclinic phase content, high relative density and the presence of the thermal residual stress generated between the ZrO2-matrix and bioglass grain boundary, contributing to the activation of the toughening mechanisms. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this work, the structure and morphology of silicon oxynitride films deposited by the PECVD technique were studied. The films were deposited under two different conditions: (a) SiOxNy with chemical compositions varying from SiO2 to Si3N4 via the control of a N2O + N-2 + SiH4 gas mixture, and (b) Si-rich SiOxNy films via the control of a N2O + SiH4 gas mixture. The analyses were performed using X-ray near edge spectroscopy (XANES) at the Si-K edge, transmission electron microscopy (TEM) and Rutherford backscattering spectroscopy (RBS). For samples with chemical composition varying from SiO2 to Si3N4, the diffraction patterns obtained by TEM exhibited changes with the chemical composition, in agreement with the XANES results. For silicon-rich silicon oxynitride samples, the formation of a-Si clusters was observed and the possibility of obtaining Si nanocrystals after annealing depending on the composition and temperature was realized. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Electric arc furnace (EAF) dust is a waste generated in the EAF during the steel production process. Among different wastes, EAF dust represents one of the most hazardous, since it contains heavy metals such as Zn, Fe, Cr, Cd and Pb. The goal of the present work is to characterise the waste through chemical analysis, particle size distribution, X-ray diffraction (XRD), scanning electron microscopy coupled with energy dispersive spectroscopy detection and thermal analysis. The waste sample is composed essentially of spherical particles and has a very small particle size and the majority of the identified elements were Fe, Zn, Ca, Cr, Mn, K and Si. The XRD has presented compounds such as ZnO, ZnFe2O4, Fe2O3, MnO, SiO2, FeFe2O4 and MnAl2O4. According to the thermal analysis results, up to 1000 degrees C the total weight loss was similar to 5%. The results of waste characterisation are very important to these further investigations.
Resumo:
This work describes the preparation and characterization of biogenic modified silica from rice hull ash and its use as a sorbent of cadmium ions. Thus, an agro-industrial residue has been used to produce a new adsorbent product which is able to remove toxic elements. Mesoporous biogenic silica was obtained by alkaline extraction of sodium silicate by hydrolysis with the sol-gel process, and it was modified with salen using 1,2-dichloroethane as a spacer. The surface area of the silica was measured by nitrogen adsorption/desorption analysis. Surface modification was measured by Fourier transform infrared spectroscopy. The degree of functionalization was obtained by elemental analysis. This work showed that biogenic modified silica can be produced in aqueous media from rice hull ash using a simple method, providing an alternative method for adsorbent preparation. Thermogravimetric analysis showed that the salen-modified silica is stable up to 209 C. The modified silica displays appropriate structural characteristics for an adsorbent. The cylindrical pores, open at both ends, allow free diffusion of cadmium ions to the adsorption sites on the silica surface. The surface modification increases cadmium adsorption on the silica surface 100-fold. The salen-modified silica showed specific adsorption for Cd2+ of 44.52 mg/g SiO2 at cadmium concentration of 100 mg/l.
Resumo:
Optically transparent, mesostructured titanium dioxide thin films were fabricated using an amphiphilic poly(alkylene oxide) block copolymer template in combination with retarded hydrolysis of a titanium isopropoxide precursor. Prior to calcination, the films displayed a stable hexagonal mesophase and high refractive indices (1.5 to 1.6) relative to mesostructured silica (1.43). After calcination, the hexagonal mesophase was retained with surface areas >300 m2 g-1. The dye Rhodamine 6G (commonly used as a laser dye) was incorporated into the copolymer micelle during the templating process. In this way, novel dye-doped mesostructured titanium dioxide films were synthesised. The copolymer not only directs the film structure, but also provides a solubilizing environment suitable for sustaining a high monomer-to-aggregate ratio at elevated dye concentrations. The dye-doped films displayed optical thresholdlike behaviour characteristic of amplified spontaneous emission. Soft lithography was successfully applied to micropattern the dye-doped films. These results pave the way for the fabrication and demonstration of novel microlaser structures and other active optical structures. This new, high-refractive index, mesostructured, dye-doped material could also find applications in areas such as optical coatings, displays and integrated photonic devices.
Resumo:
Catalytic activities and deactivation characteristics of oxides-supported nickel catalysts for the reaction of methane reforming with carbon dioxide were investigated. The dynamic carbon deposition on various nickel catalysts was also studied by a thermogravimetric method. Among the catalysts prepared, Ni/La2O3, Ni/alpha-Al2O3, Ni/SiO2, and Ni/CeO2 showed very high CH4 and CO2 conversions and moderate deactivation whereas Ni/MgO and Ni/TiO2 had lower conversions when the Ni reduction was conducted at 500 degrees C. When Ni/MgO catalyst was reduced at 800 degrees C, it exhibited not only comparable conversions of CH4 and CO2 with other active catalysts but also much longer period of stability without deactivation. The amount of carbon deposited in Ni-based catalysts varied depending on the nature of support and followed the order of Ni/La2O3 > Ni/alpha-Al2O3 > Ni/SiO2 > Ni/MgO > Ni/CeO2 at 700 degrees C. The carbons formed on the catalyst surface showed different structural and chemical properties, and these in turn affected the catalytic activity of the catalysts.
Resumo:
The effects of the support phase and catalyst preparation methods on catalytic activity and carbon deposition were systematically investigated over nickel catalysts supported on Al2O3, SiO2 and MgO for the reforming reaction of methane with carbon dioxide. It is found that the pore structure of the support and metal-support interaction significantly affected the catalytic activity and coking resistance. Catalyst with well-developed porosity exhibited higher catalytic activity. Strong interaction between metal and the support made the catalyst more resistant to sintering and coking, thus resulting in a longer time of catalyst stability. (C) 1998 Elsevier Science B.V.
Resumo:
The catalytic activities of Ni/gamma-Al2O3 catalysts prepared using different nickel precursor compounds were studied for the reaction of methane reforming with CO2. It is found that the nickel precursor employed in the catalyst preparation plays an important role. The catalyst based on nickel nitrate exhibited higher catalytic activity and stability over a 24-h test period than the other two catalysts derived from nickel chloride and nickel acetylacetonate. A comprehensive characterisation of the catalysts showed that the weak interaction between Ni particles and gamma-Al2O3 resulted in more active sites on Ni nitrate-derived Ni/gamma-Al2O3 catalyst. Coking studies showed that carbon deposition on Ni catalysts derived from inorganic precursors (nitrate and chloride) were more severe than on the organic precursor-derived catalyst. However, the Ni nitrate-derived catalyst was found to have the highest stability (or lowest deactivation rate) mainly due to the active carbon species (-C-C-) of the resulting graphitic structure and their close contact with the metal particles. In contrast, the carbon formed on Ni-AA catalyst (from Ni acetylacetonate) is dominated by inactive -CO-C- species, thus leading to a rapid accumulation of carbon in this catalyst and more severe deactivation. (C) 1998 Elsevier Science B.V.
Resumo:
A series of Ni catalysts supported on flyash treated by various chemical methods was tested for carbon dioxide reforming of methane. Ni catalyst on the flyash treated with CaO (Ni/Ash-CaO) shows high conversion and stability, being close to those of the well-reported Ni/Al2O3 and Ni/SiO2 catalysts with conversions approaching thermodynamic equilibrium levels.
Resumo:
The effect of alumina on the liquidus temperatures of fayalite slags at iron saturation has been investigated experimentally. Equilibrated synthetic slags were quenched, and the samples were subsequently examined using optical microscopy and electron probe microanalysis (EPMA). The isotherms in the fayalite primary field and boundary lines were determined, and the results were presented in the form of pseudo-ternary phase diagrams of FeO-CaO-SiO2 with 0, 2, 4, and 6 wt pet Al2O3 in the slag. The experimental results show that the alumina addition expands the fayalite primary phase field and decreases the liquidus temperatures in the fayalite primary phase field.
Resumo:
We present a method for measuring single spins embedded in a solid by probing two-electron systems with a single-electron transistor (SET). Restrictions imposed by the Pauli principle on allowed two-electron states mean that the spin state of such systems has a profound impact on the orbital states (positions) of the electrons, a parameter which SET's are extremely well suited to measure. We focus on a particular system capable of being fabricated with current technology: a Te double donor in Si adjacent to a Si/SiO2, interface and lying directly beneath the SET island electrode, and we outline a measurement strategy capable of resolving single-electron and nuclear spins in this system. We discuss the limitations of the measurement imposed by spin scattering arising from fluctuations emanating from the SET and from lattice phonons. We conclude that measurement of single spins, a necessary requirement for several proposed quantum computer architectures, is feasible in Si using this strategy.
Resumo:
A series of TiO2 samples with different anatase-to-rutile ratios was prepared by calcination, and the roles of the two crystallite phases of titanium(IV) oxide (TiO2) on the photocatalytic activity in oxidation of phenol in aqueous solution were studied. High dispersion of nanometer-sized anatase in the silica matrix and the possible bonding of Si-O-Ti in SiO2/TiO2 interface were found to stabilize the crystallite transformation from anatase to rutile. The temperature for this transformation was 1200 degrees C for the silica-titania (ST) sample, much higher than 700 degrees C for Degussa P25, a benchmarking photocatalyst. It is shown that samples with higher anatase-to-rutile ratios have higher activities for phenol degradation. However, the activity did not totally disappear after a complete crystallite transformation for P25 samples, indicating some activity of the rutile phase. Furthermore, the activity for the ST samples after calcination decreased significantly, even though the amount of anatase did not change much. The activity of the same samples with different anatase-to-rutile ratios is more related to the amount of the surface-adsorbed water and hydroxyl groups and surface area. The formation of rutile by calcination would reduce the surface-adsorbed water and hydroxyl groups and surface area, leading to the decrease in activity.
Resumo:
An extensive research program focused on the characterization of various metallurgical complex smelting and coal combustion slags is being undertaken. The research combines both experimental and thermodynamic modeling studies. The approach is illustrated by work on the PbO-ZnO-Al2O3-FeO-Fe2O3-CaO-SiO2 system. Experimental measurements of the liquidus and solidus have been undertaken under oxidizing and reducing conditions using equilibration, quenching, and electron probe X-ray microanalysis. The experimental program has been planned so as to obtain data for thermodynamic model development as well as for pseudo-ternary Liquidus diagrams that can be used directly by process operators. Thermodynamic modeling has been carried out using the computer system FACT, which contains thermodynamic databases with over 5000 compounds and evaluated solution models. The FACT package is used for the calculation of multiphase equilibria in multicomponent systems of industrial interest. A modified quasi-chemical solution model is used for the liquid slag phase. New optimizations have been carried out, which significantly improve the accuracy of the thermodynamic models for lead/zinc smelting and coal combustion processes. Examples of experimentally determined and calculated liquidus diagrams are presented. These examples provide information of direct relevance to various metallurgical smelting and coal combustion processes.