903 resultados para Mental retardation.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Wnt pathways contribute to many processes in cancer and developmental biology, with β-catenin being a key canonical component. P120-catenin, which is structurally similar to β-catenin, regulates the expression of certain Wnt target genes, relieving repression conferred by the POZ/ zinc-finger transcription factor Kaiso. In my first project, employing Xenopus embryos and mammalian cell lines, I found that the degradation machinery of the canonical Wnt pathway modulates p120-catenin protein stability, especially p120 isoform-1, through mechanisms shared with b-catenin. Exogenous expression of destruction-complex components such as GSK3b or Axin promotes p120-catenin degradation, and consequently, is able to rescue developmental phenotypes resulting from p120 over-expression during early Xenopus embryonic development. Conversely, as predicted, the in vivo depletion of either Axin or GSK3b coordinately increased p120 and b-catenin levels, while p120 levels decreased upon LRP5/6 depletion, which are positive modulators in the canonical Wnt pathway. At the primary sequence level, I resolved conserved GSK3b phosphorylation sites in p120’s (isoform 1) amino-terminal region. Point-mutagenesis of these residues inhibited the association of destruction complex proteins including those involved in ubiquitination, resulting in p120-catenin stabilization. Importantly, we found that two additional p120-catenin family members, ARVCF-catenin and d-catenin, in common with b-catenin and p120, associate with Axin, and are degraded in Axin’s presence. Thus, by similar means, it appears that canonical Wnt signals coordinately modulate multiple catenin proteins having roles in development and conceivably disease states. In my second project, I found that the Dyrk1A kinase exhibits a positive effect upon p120-catenin levels. That is, unlike the negative regulator GSK3b kinase, a candidate screen revealed that Dyrk1A kinase enhances p120-catenin protein levels via increased half-life. Dyrk1A is encoded by a gene located within the trisomy of chromosome 21, which contributes to mental retardation in Down Syndrome patients. I found that Dyrk1A expression results in increased p120 protein levels, and that Dyrk1A specifically associates with p120 as opposed to other p120-catenin family members or b-catenin. Consistently, Dyrk1A depletion in mammalian cell lines and Xenopus embryos decreased p120-catenin levels. I further confirmed that Dyrk overexpression and knock-down modulates both Siamois and Wnt11 gene expression in the expected manner based upon the resulting latered levels of p120-catenin. I determined that Dyrk expression rescues Kaiso depletion effects (gastrulation failure; increased endogenous Wnt11 expression), and vice versa. I then identified a putative Dyrk phosphorylation region within the N-terminus of p120-catenin, which may also be responsible for Dyrk1A association. I went on to make a phosphomimic mutant, which when over-expressed, had the predicted enhanced capacity to positively modulate endogenous Wnt11 and Siamois expression, and thereby generate gastrulation defects. Given that Dyrk1A modulates Siamois expression through stabilization of p120-catenin, I further observed that ectopic expression of Dyrk can positively influence b-catenin’s capacity to generate ectopic dorsal axes when ventrally expressed in early Xenopus embryos. Future work will investigate how Dyrk1A modulates the Wnt signaling pathway through p120-catenin, and possibly begin to address how dysfunction of Dyrk1A with respect to p120-catenin might relate to aspects of Down syndrome. In summary, the second phase of my graduate work appears to have revealed a novel aspect of Dyrk1A/p120-catenin action in embryonic development, with a functional linkage to canonical Wnt signaling. What I have identified as a “Dyrk1A/p120-catenin/Kaiso pathway” may conceivably assist in our larger understanding of the impact of Dyrk1A dosage imbalance in Down syndrome.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Children with severe emotional problems often have multiple needs that require disparate services including child welfare, juvenile justice, health, mental health, substance abuse, and mental retardation (Stroul, 1996). However, the primary care giving responsibilities for these youngsters still remain with their families. It is the family who shelters and clothes them; provides guidance, affection, recreation, nurturing; gets them to appointments with doctors and therapists and to school dayin- and-day-out, year after year (Lourie, 1995). Despite the invaluable and irreplaceable care provided by families, they are often maligned by a system which characterizes them as having their own problems and inadequacies. The purpose of this research is to learn more about the strengths of families who care for children with severe emotional disabilities (SED). This exploratory descriptive study made use of focus groups attended by parents who are caring for such children. In order to improve services to these families, it is important that we understand how the notion of strengths play out in their everyday lives. Observations are made about the care giving plan, which all families devise in the course of caring for their child with special needs. Implications for paid professionals who serve these families are offered by presenting a model for putting family care givers at the hub of the service provision wheel.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nephroblastoma or Wilms' tumor is a pediatric renal malignancy that is the most frequently occurring childhood solid tumor. Approximately 1-2% of children with Wilms' tumor also present with aniridia, a congenital absence of all or part of the iris of the eye. These children also have high rates of genitourinary anomalies and mental retardation resulting in what is called the WAGR (Wilms' tumor, aniridia, genitourinary anomaly, mental retardation) syndrome. Cytogenetic analysis of metaphase chromosomes from these patients revealed a consistent deletion of band P13 on chromosome 11. These observations suggest close physical linkage between the disease-related loci, and further imply that development of each phenotype results from the loss of normal gene function.^ The objective of this work is to understand the molecular events at chromosome band 11p13 that are essential to the development of sporadic Wilms' tumor and sporadic aniridia. Two human/hamster somatic cell hybrids have been used to identify sixteen independent DNA probes that map to this segment of the human genome. These newly identified DNA probes and four previously reported probes (CAT, FSHB, D11S16, and HBVIS) have been used to subdivide 11p13 into five intervals defined by overlapping constitutional deletions from several WAGR patients. A long-range physical map of 11p13 has been constructed using each of these probes in Southern blot analysis of genomic DNA after digestion with infrequently cutting restriction enzymes and pulse-field gel electrophoresis. This map, established primarily with MluI and NotI, spans approximately 13 $\times$ 10$\sp{6}$ bp and encompasses deletion and translocation breakpoints associated with genitourinary anomalies, aniridia, and sporadic Wilms' tumor. This complete physical map of human chromosome band 11p13 enables us to localize the genes for sporadic Wilms' tumor and sporadic aniridia to a small number of specific NotI fragments. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A polymorphous variant of oligodendroglioma was described by K.J. Zülch half a century ago, and is only very sporadically referred to in the subsequent literature. In particular, no comprehensive analysis with respect to clinical or genetic features of these tumors is available. From a current perspective, the term polymorphous oligodendroglioma (pO) may appear as contradictory in terms, as nuclear monotony is a histomorphological hallmark of oligodendrogliomas. For the purpose of this study, we defined pO as diffusely infiltrating gliomas felt to be of oligodendroglial rather than astrocytic differentiation and characterized by the presence of multinucleate tumor giant cells and/or nuclear pleomorphism. In a total of nine patients, we identified tumors consistent with this working definition. All tumors were high-grade. We characterized these with respect to clinical, histomorphological and genetic features. Despite clinical and genetic heterogeneity, we identified a subset of tumors of bona fide oligodendroglial differentiation as characterized by combined loss of heterozygosity of chromosome arms 1p and 19q (LOH 1p19q). Those tumors that lacked LOH 1p19q showed a high frequency of IDH1 mutations and loss of alpha thalassemia/mental retardation syndrome X-linked gene (ATRX) immunoreactivity, indicating a possible phenotypic convergence of true oligodendrogliomas and gliomas of the alternative lengthening of telomeres (ALT) pathway. p53 alterations were common irrespective of the 1p19q status. Histomorphologically, the tumors featured interspersed bizarre multinucleate giant tumor cells, while the background population varied from monotonous to significantly pleomorphic. Our findings indicate, that a rare polymorphous - or "giant cell" - variant of oligodendroglioma does indeed exist.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dandy-Walker-like malformation (DWLM) is the result of aberrant brain development and mainly characterized by cerebellar hypoplasia. DWLM affected dogs display a non-progressive cerebellar ataxia. Several DWLM cases were recently observed in the Eurasier dog breed, which strongly suggested a monogenic autosomal recessive inheritance in this breed. We performed a genome-wide association study (GWAS) with 9 cases and 11 controls and found the best association of DWLM with markers on chromosome 1. Subsequent homozygosity mapping confirmed that all 9 cases were homozygous for a shared haplotype in this region, which delineated a critical interval of 3.35 Mb. We sequenced the genome of an affected Eurasier and compared it with the Boxer reference genome and 47 control genomes of dogs from other breeds. This analysis revealed 4 private non-synonymous variants in the critical interval of the affected Eurasier. We genotyped these variants in additional dogs and found perfect association for only one of these variants, a single base deletion in the VLDLR gene encoding the very low density lipoprotein receptor. This variant, VLDLR:c.1713delC is predicted to cause a frameshift and premature stop codon (p.W572Gfs*10). Variants in the VLDLR gene have been shown to cause congenital cerebellar ataxia and mental retardation in human patients and Vldlr knockout mice also display an ataxia phenotype. Our combined genetic data together with the functional knowledge on the VLDLR gene from other species thus strongly suggest that VLDLR:c.1713delC is indeed causing DWLM in Eurasier dogs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Individuals with intellectual disabilities (ID) often struggle with learning how to read. Reading difficulties seem to be the most common secondary condition of ID. Only one in five children with mild or moderate ID achieves even minimal literacy skills. However, literacy education for children and adolescents with ID has been largely overlooked by researchers and educators. While there is little research on reading of children with ID, many training studies have been conducted with other populations with reading difficulties. The most common approach of acquiring literacy skills consists of sophisticated programs that train phonological skills and auditory perception. Only few studies investigated the influence of implicit learning on literacy skills. Implicit learning processes seem to be largely independent of age and IQ. Children are sensitive to the statistics of their learning environment. By frequent word reading they acquire implicit knowledge about the frequency of single letters and letter patterns in written words. Additionally, semantic connections not only improve the word understanding, but also facilitate storage of words in memory. Advances in communication technology have introduced new possibilities for remediating literacy skills. Computers can provide training material in attractive ways, for example through animations and immediate feedback .These opportunities can scaffold and support attention processes central to learning. Thus, the aim of this intervention study was to develop and implement a computer based word-picture training, which is based on statistical and semantic learning, and to examine the training effects on reading, spelling and attention in children and adolescents (9-16 years) diagnosed with mental retardation (general IQ  74). Fifty children participated in four to five weekly training sessions of 15-20 minutes over 4 weeks, and completed assessments of attention, reading, spelling, short-term memory and fluid intelligence before and after training. After a first assessment (T1), the entire sample was divided in a training group (group A) and a waiting control group (group B). After 4 weeks of training with group A, a second assessment (T2) was administered with both training groups. Afterwards, group B was trained for 4 weeks, before a last assessment (T3) was carried out in both groups. Overall, the results showed that the word-picture training led to substantial gains on word decoding and attention for both training groups. These effects were preserved six weeks later (group A). There was also a clear tendency of improvement in spelling after training for both groups, although the effect did not reach significance. These findings highlight the fact that an implicit statistical learning training in a playful way by motivating computer programs can not only promote reading development, but also attention in children with intellectual disabilities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fucosidosis is a rare lysosomal storage disease. A 14-year-old girl is presented, with recurrent infections, progressive dystonic movement disorder and mental retardation with onset in early childhood. The clinical picture was also marked by mild morphologic features, but absent dysostosis multiplex and organomegaly. MRI images at 6.5 years of age were reminiscent of pallidal iron deposition ("eye-of-the-tiger" sign) seen in neurodegeneration with brain iron accumulation (NBIA) disorders. Progressively spreading angiokeratoma corporis diffusum led to the correct diagnosis. This case extends the scope of clinical and neuroradiological manifestations of fucosidosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Suicide is recognized as a major public health and clinical problem in the United States. One fifth of adolescents in the United States seriously consider suicide each year, and about 8% of high school students attempt suicide at least once. Hispanic ethnicity constitutes a risk factor for suicidal ideation and suicide attempts, with Hispanic females at highest risk. Nevertheless, published studies on suicidal behavior in Hispanic female adolescents are extremely limited and focus on suicidal ideation in school samples. Given the severity of the problem and the paucity of information on this topic, more research on ethnic differences in suicidal ideation in community samples of high-risk children is urgently needed. This cross-sectional study delineated differences in suicide ideation between Hispanic female adolescents and non-Hispanic white female adolescents attending a mental health clinic and examined the association of ethnicity with suicide ideation independent of other known risk factors. Data were accrued between June 2004 and December 2008 in a Harris County Mental Health and Mental Retardation Association (MHMRA) clinic. Data were limited to adolescents who were Harris County Residents between the ages of 10 to 17 years when they were admitted to the clinic. The objective of this study was to determine whether differences in socio-demographic and clinical variables play a significant role in ethnic disparities in suicide ideation. A series of logistic regressions were performed to estimate the association between ethnicity and suicide ideation after controlling for potentially confounding factors. ^ Results showed an interaction between Hispanic ethnicity and having a history of treatment: Hispanic girls having history of treatment had lower odds of having suicide ideation than Hispanic girls without such a history. After adjusting for treatment history, family problems, substance use, juvenile justice involvement, current treatment, and age, Hispanic girls had 1.86 times the odds of having suicide ideation than non Hispanic girls (OR=1.86, 95% CI=0.88-1.46). Although additional studies on community samples of high risk adolescents are needed to verify these findings, our study highlights the fact that Hispanic girls are at significantly higher risk and need to be targeted for prevention and treatment efforts. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Healthcare for the Homeless—Houston (HHH) received a research grant from The Medallion Foundation, Inc. in March 2006 to pilot The Jail Inreach Project, an intensive “inreach” initiative to assess the impact of providing continuity of mental and primary health care services for homeless individuals who suffer from mental illness and/or substance abuse being released from jail. This pilot project was initiated by HHH, in collaboration with the Harris County Sheriff’s Office and the Mental Health Mental Retardation Authority of Harris County (MHMRA). Those who are flagged as “frequent flyers” and who are diagnosed with a mental illness are referred to the Jail Inreach Project. In order to maximize the effectiveness of the discharge plan, case managers offer the option of meeting the client at the time of release and bring them to the HHH clinic located four blocks from the jail. Participation in both the program and the option for direct release to the care of a case manager are voluntary.^ The purpose of this study is to determine the outcomes of the Jail Inreach Project and addresses the following objectives: (1) to evaluate the characteristics of inmates that chose to be released from jail to the direct care of an HHH case manager versus those who opt for self release and (2) to determine the number and percent of inmates that are linked to services and relationship with type of release (direct versus indirect), (3) to determine if there is a relationship between outcomes and characteristics and (4) to determine what outcomes are a function of release, controlling for characteristics. Statistical analysis, including frequencies, cross tabulations, chi-square and logistical regression, found that those who opt for self release are six times less likely to be successfully linked to services and that gender is the most significant predictor of choosing self release. Men are far more likely to opt for self release than women engaged in this program. These findings help inform policy and program design and development that addresses the difference in service utilization and successful linkage to services post-incarceration. Successful linkage to services, thus continuity of and access to care, further impact the effects of the revolving door phenomenon of mentally ill homeless individuals cycling between the streets, jails and hospital emergency centers.^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Discharged psychiatric patients were studied six months post-discharge to determine those demographic, social and clinical characteristics affecting positive or negative adjustment and the degree to which the use of mental health services and medication compliance mediated the effects. With the exception of those with primary or secondary diagnoses of OBS, substance abuse or mental retardation, sixty-three psychiatric subjects between the ages of eighteen and sixty-four were chosen from all admissions into the hospital and interviewed six months after discharge using a specially designed questionnaire.^ The subjects' adjustment to community living was found to be marginal. Although not engaged in destructive activities, over half were living with their family members who supported them financially and emotionally. Most were unemployed and had been so for a long time. Others worked sporadically and frequently changed residences. Most did have substantial social ties with extended family and with friends with whom they interacted regularly, but one-fourth were socially isolated. Almost three-quarters continued to obtain regular mental health services after discharge and followed medication instructions under the supervision of their physician. The use of mental health services after discharge and the use of medication did not appear to affect the subjects' community adaption or their rate of rehospitalization.^ Forty percent of those discharged were rehospitalized by the end of the follow-up period. Four levels of risk of rehospitalization emerged. The highest risk was associated with a history of five or more prior hospitalizations, living alone, and social isolation. One third or more of the subjects expressed a need for more counseling, leisure time activities, case-manager assistance, vocational guidance, supervised housing, and placement into a transitional residential treatment program.^ Recommendations were made to enhance the ability to predict recidivism, to develop interorganizational casework management programs linking the patient and family to the community mental health system and to create computerized tracking and monitoring programs that systematically report patient treatment regimen and progress cross-sectionally and longitudinally. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Down syndrome (DS) is the most frequent genetic cause of mental retardation. Cognitive dysfunction in these patients is correlated with reduced dendritic branching and complexity, along with fewer spines of abnormal shape that characterize the cortical neuronal profile of DS. DS phenotypes are caused by the disruptive effect of specific trisomic genes. Here, we report that overexpression of dual-specificity tyrosine phosphorylation-regulated kinase 1A, DYRK1A, is sufficient to produce the dendritic alterations observed in DS patients. Engineered changes in Dyrk1A gene dosage in vivo strongly alter the postnatal dendritic arborization processes with a similar progression than in humans. In cultured mammalian cortical neurons, we determined a reduction of neurite outgrowth and synaptogenesis. The mechanism underlying neurite dysgenesia involves changes in the dynamic reorganization of the cytoskeleton.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El dolor es un síntoma frecuente en la práctica médica. En España, un estudio realizado en el año 2000 demostró que cada médico atiende un promedio de 181 pacientes con dolor por mes, la mayoría de ellos con dolor crónico moderado1. Del 7%-8% de la población europea está afectada y hasta el 5% puede ser grave2-3, se estima, que afecta a más de dos millones de españoles4. En la consulta de Atención Primaria, los pacientes con dolor neuropático tienen tasas de depresión mucho mayores 5-6-7. El dolor neuropático8 es el dolor causado por daño o enfermedad que afecta al sistema somato-sensorial, es un problema de salud pública con un alto coste laboral, debido a que existe cierto desconocimiento de sus singularidades, tanto de su diagnóstico como de su tratamiento, que al fallar, el dolor se perpetúa y se hace más rebelde a la hora de tratarlo, en la mayoría de las ocasiones pasa a ser crónico. Los mecanismos fisiopatológicos son evolutivos, se trata de un proceso progresivo e integrado que avanza si no recibe tratamiento, ocasionando graves repercusiones en la calidad de vida de los pacientes afectados9. De acuerdo a Prusiner (premio nobel de medicina 1997), en todas las enfermedades neurodegenerativas hay algún tipo de proceso anormal de la función neuronal. Las enfermedades neurodegenerativas son la consecuencia de anormalidades en el proceso de ciertas proteínas que intervienen en el ciclo celular, por lo tanto da lugar al cúmulo de las mismas en las neuronas o en sus proximidades, disminuyendo o anulando sus funciones, como la enfermedad de Alzheimer y el mismo SXF. La proteína FMRP (Fragile Mental Retardation Protein), esencial para el desarrollo cognitivo normal, ha sido relacionada con la vía piramidal del dolor10-11-12. El Síndrome de X Frágil13-14 (SXF), se debe a la mutación del Gen (FMR-1). Como consecuencia de la mutación, el gen se inactiva y no puede realizar la función de sintetizar la proteína FMRP. Por su incidencia se le considera la primera causa de Deficiencia Mental Hereditaria sólo superada por el Síndrome de Down. La electroencefalografía (EEG) es el registro de la actividad bioeléctrica cerebral que ha traído el desarrollo diario de los estudios clínicos y experimentales para el descubrimiento, diagnóstico y tratamiento de un gran número de anormalidades neurológicas y fisiológicas del cerebro y el resto del sistema nervioso central (SNC) incluyendo el dolor. El objetivo de la presente investigación es por medio de un estudio multimodal, desarrollar nuevas formas de presentación diagnóstica mediante técnicas avanzadas de procesado de señal y de imagen, determinando así los vínculos entre las evaluaciones cognitivas y su correlación anatómica con la modulación al dolor presente en patologías relacionadas con proteína FMRP. Utilizando técnicas biomédicas (funcionalestructural) para su caracterización. Para llevar a cabo esta tarea hemos utilizado el modelo animal de ratón. Nuestros resultados en este estudio multimodal demuestran que hay alteraciones en las vías de dolor en el modelo animal FMR1-KO, en concreto en la modulación encefálica (dolor neuropático), los datos se basan en los resultados del estudio estructural (imagen histología), funcional (EEG) y en pruebas de comportamiento (Laberinto de Barnes). En la Histología se muestra una clara asimetría estructural en el modelo FMR1 KO con respecto al control WT, donde el hemisferio Izquierdo tiene mayor densidad de masa neuronal en KO hembras 56.7%-60.8%, machos 58.3%-61%, en WT hembras 62.7%-62.4%, machos 55%-56.2%, hemisferio derecho-izquierdo respectivamente, esto refleja una correlación entre hemisferios muy baja en los sujetos KO (~50%) con respecto a los control WT (~90%). Se encontró correlación significativa entre las pruebas de memoria a largo plazo con respecto a la asimetría hemisférica (r = -0.48, corregido <0,05). En el estudio de comportamiento también hay diferencias, los sujetos WT tuvieron 22% un de rendimiento en la memoria a largo plazo, mientras que en los machos hay deterioro de memoria de un 28% que se corresponden con la patología en humanos. En los resultados de EEG estudiados en el hemisferio izquierdo, en el área de la corteza insular, encuentran que la latencia de la respuesta al potencial evocado es menor (22vs32 15vs96seg), la intensidad de la señal es mayor para los sujetos experimentales FMR1 KO frente a los sujetos control, esto es muy significativo dados los resultados en la histología (140vs129 145vs142 mv). Este estudio multimodal corrobora que las manifestaciones clínicas del SXF son variables dependientes de la edad y el sexo. Hemos podido corroborar en el modelo animal que en la etapa de adulto, los varones con SXF comienzan a desarrollar problemas en el desempeño de tareas que requieren la puesta en marcha de la función ejecutiva central de la memoria de trabajo (almacenamiento temporal). En el análisis del comportamiento es difícil llegar a una conclusión objetiva, se necesitan más estudios en diferentes etapas de la vida corroborados con resultados histológicos. Los avances logrados en los últimos años en su estudio han sido muy positivos, de tal modo que se están abriendo nuevas vías de investigación en un conjunto de procesos que representan un gran desafío a problemas médicos, asistenciales, sociales y económicos a los que se enfrentan los principales países desarrollados, con un aumento masivo de las expectativas de vida y de calidad. Las herramientas utilizadas en el campo de las neurociencias nos ofrecen grandes posibilidades para el desarrollo de estrategias que permitan ser utilizadas en el área de la educación, investigación y desarrollo. La genética determina la estructura del cerebro y nuestra investigación comprueba que la ausencia de FMRP también podría estar implicada en la modulación del dolor como parte de su expresión patológica siendo el modelo animal un punto importante en la investigación científica fundamental para entender el desarrollo de anormalidades en el cerebro. ABSTRACT Pain is a common symptom in medical practice. In Spain, a study conducted in 2000 each medical professional treats an average of 181 patients with pain per month, most of them with chronic moderate pain. 7% -8% of the European population is affected and up to 5% can be serious, it is estimated to affect more than two million people in Spain. In Primary Care, patients with neuropathic pain have much higher rates of depression. Neuropathic pain is caused by damage or disease affecting the somatosensory system, is a public health problem with high labor costs, there are relatively unfamiliar with the peculiarities in diagnosis and treatment, failing that, the pain is perpetuated and becomes rebellious to treat, in most cases becomes chronic. The pathophysiological mechanisms are evolutionary, its a progressive, if untreated, causing severe impact on the quality of life of affected patients. According to Prusiner (Nobel Prize for Medicine 1997), all neurodegenerative diseases there is some abnormal process of neuronal function. Neurodegenerative diseases are the result of abnormalities in the process of certain proteins involved in the cell cycle, reducing or canceling its features such as Alzheimer's disease and FXS. FMRP (Fragile Mental Retardation Protein), is essential for normal cognitive development, and has been linked to the pyramidal tract pain. Fragile X Syndrome (FXS), is due to mutation of the gene (FMR-1). As a consequence of the mutation, the gene is inactivated and can not perform the function of FMRP synthesize. For its incidence is considered the leading cause of Mental Deficiency Hereditary second only to Down Syndrome. Electroencephalography (EEG) is the recording of bioelectrical brain activity, is a advancement of clinical and experimental studies for the detection, diagnosis and treatment of many neurological and physiological abnormalities of the brain and the central nervous system, including pain. The objective of this research is a multimodal study, is the development of new forms of presentation using advanced diagnostic techniques of signal processing and image, to determine the links between cognitive evaluations and anatomic correlation with pain modulation to this protein FMRP-related pathologies. To accomplish this task have used the mouse model. Our results in this study show alterations in multimodal pain pathways in FMR1-KO in brain modulation (neuropathic pain), the data are based on the results of the structural study (histology image), functional (EEG) testing and behavior (Barnes maze). Histology In structural asymmetry shown in FMR1 KO model versus WT control, the left hemisphere is greater density of neuronal mass (KO females 56.7% -60.8%, 58.3% -61% males, females 62.7% -62.4 WT %, males 55% -56.2%), respectively right-left hemisphere, this reflects a very low correlation between hemispheres in KO (~ 50%) subjects compared to WT (~ 90%) control. Significant correlation was found between tests of long-term memory with respect to hemispheric asymmetry (r = -0.48, corrected <0.05). In the memory test there are differences too, the WT subjects had 22% yield in long-term memory, in males there memory impairment 28% corresponding to the condition in humans. The results of EEG studied in the left hemisphere, in insular cortex area, we found that the latency of the response evoked potential is lower (22vs32 15vs96seg), the signal strength is higher for the experimental subjects versus FMR1 KO control subjects, this is very significant given the results on histology (140vs129 145vs142 mv). This multimodal study confirms that the clinical manifestations of FXS are dependent variables of age and sex. We have been able to corroborate in the animal model in the adult stage, males with FXS begin developing problems in the performance of tasks that require the implementation of the central executive function of working memory (temporary storage). In behavior analysis is difficult to reach an objective conclusion, more studies are needed in different life stages corroborated with histologic findings. Advances in recent years were very positive, being opened new lines of research that represent a great challenge to physicians, health care, social and economic problems facing the major developed countries, with a massive increase in life expectancy and quality. The tools used in the field of neuroscience offer us great opportunities for the development of strategies to be used in the area of education, research and development. Genetics determines the structure of the brain and our research found that the absence of FMRP might also be involved in the modulation of pain as part of their pathological expression being an important animal model in basic scientific research to understand the development of abnormalities in brain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To study the pathogenesis of central nervous system abnormalities in Down syndrome (DS), we have analyzed a new genetic model of DS, the partial trisomy 16 (Ts65Dn) mouse. Ts65Dn mice have an extra copy of the distal aspect of mouse chromosome 16, a segment homologous to human chromosome 21 that contains much of the genetic material responsible for the DS phenotype. Ts65Dn mice show developmental delay during the postnatal period as well as abnormal behaviors in both young and adult animals that may be analogous to mental retardation. Though the Ts65Dn brain is normal on gross examination, there is age-related degeneration of septohippocampal cholinergic neurons and astrocytic hypertrophy, markers of the Alzheimer disease pathology that is present in elderly DS individuals. These findings suggest that Ts65Dn mice may be used to study certain developmental and degenerative abnormalities in the DS brain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ATRX is a member of the SNF2 family of helicase/ATPases that is thought to regulate gene expression via an effect on chromatin structure and/or function. Mutations in the hATRX gene cause severe syndromal mental retardation associated with α-thalassemia. Using indirect immunofluorescence and confocal microscopy we have shown that ATRX protein is associated with pericentromeric heterochromatin during interphase and mitosis. By coimmunofluorescence, ATRX localizes with a mouse homologue of the Drosophila heterochromatic protein HP1 in vivo, consistent with a previous two-hybrid screen identifying this interaction. From the analysis of a trap assay for nuclear proteins, we have shown that the localization of ATRX to heterochromatin is encoded by its N-terminal region, which contains a conserved plant homeodomain-like finger and a coiled-coil domain. In addition to its association with heterochromatin, at metaphase ATRX clearly binds to the short arms of human acrocentric chromosomes, where the arrays of ribosomal DNA are located. The unexpected association of a putative transcriptional regulator with highly repetitive DNA provides a potential explanation for the variability in phenotype of patients with identical mutations in the ATRX gene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neuronal migration is a critical phase of brain development, where defects can lead to severe ataxia, mental retardation, and seizures. In the developing cerebellum, granule neurons turn on the gene for tissue plasminogen activator (tPA) as they begin their migration into the cerebellar molecular layer. Granule neurons both secrete tPA, an extracellular serine protease that converts the proenzyme plasminogen into the active protease plasmin, and bind tPA to their cell surface. In the nervous system, tPA activity is correlated with neurite outgrowth, neuronal migration, learning, and excitotoxic death. Here we show that compared with their normal counterparts, mice lacking the tPA gene (tPA−/−) have greater than 2-fold more migrating granule neurons in the cerebellar molecular layer during the most active phase of granule cell migration. A real-time analysis of granule cell migration in cerebellar slices of tPA−/− mice shows that granule neurons are migrating 51% as fast as granule neurons in slices from wild-type mice. These findings establish a direct role for tPA in facilitating neuronal migration, and they raise the possibility that late arriving neurons may have altered synaptic interactions.