907 resultados para Memory B-cell immune response
Genome-Wide Analyses Suggest Mechanisms Involving Early B-Cell Development in Canine IgA Deficiency.
Resumo:
Immunoglobulin A deficiency (IgAD) is the most common primary immune deficiency disorder in both humans and dogs, characterized by recurrent mucosal tract infections and a predisposition for allergic and other immune mediated diseases. In several dog breeds, low IgA levels have been observed at a high frequency and with a clinical resemblance to human IgAD. In this study, we used genome-wide association studies (GWAS) to identify genomic regions associated with low IgA levels in dogs as a comparative model for human IgAD. We used a novel percentile groups-approach to establish breed-specific cut-offs and to perform analyses in a close to continuous manner. GWAS performed in four breeds prone to low IgA levels (German shepherd, Golden retriever, Labrador retriever and Shar-Pei) identified 35 genomic loci suggestively associated (p <0.0005) to IgA levels. In German shepherd, three genomic regions (candidate genes include KIRREL3 and SERPINA9) were genome-wide significantly associated (p <0.0002) with IgA levels. A ~20kb long haplotype on CFA28, significantly associated (p = 0.0005) to IgA levels in Shar-Pei, was positioned within the first intron of the gene SLIT1. Both KIRREL3 and SLIT1 are highly expressed in the central nervous system and in bone marrow and are potentially important during B-cell development. SERPINA9 expression is restricted to B-cells and peaks at the time-point when B-cells proliferate into antibody-producing plasma cells. The suggestively associated regions were enriched for genes in Gene Ontology gene sets involving inflammation and early immune cell development.
Resumo:
The paracaspase MALT1 plays an important role in immune receptor-driven signaling pathways leading to NF-κB activation. MALT1 promotes signaling by acting as a scaffold, recruiting downstream signaling proteins, as well as by proteolytic cleavage of multiple substrates. However, the relative contributions of these two different activities to T and B cell function are not well understood. To investigate how MALT1 proteolytic activity contributes to overall immune cell regulation, we generated MALT1 protease-deficient mice (Malt1(PD/PD)) and compared their phenotype with that of MALT1 knockout animals (Malt1(-/-)). Malt1(PD/PD) mice displayed defects in multiple cell types including marginal zone B cells, B1 B cells, IL-10-producing B cells, regulatory T cells, and mature T and B cells. In general, immune defects were more pronounced in Malt1(-/-) animals. Both mouse lines showed abrogated B cell responses upon immunization with T-dependent and T-independent Ags. In vitro, inactivation of MALT1 protease activity caused reduced stimulation-induced T cell proliferation, impaired IL-2 and TNF-α production, as well as defective Th17 differentiation. Consequently, Malt1(PD/PD) mice were protected in a Th17-dependent experimental autoimmune encephalomyelitis model. Surprisingly, Malt1(PD/PD) animals developed a multiorgan inflammatory pathology, characterized by Th1 and Th2/0 responses and enhanced IgG1 and IgE levels, which was delayed by wild-type regulatory T cell reconstitution. We therefore propose that the pathology characterizing Malt1(PD/PD) animals arises from an immune imbalance featuring pathogenic Th1- and Th2/0-skewed effector responses and reduced immunosuppressive compartments. These data uncover a previously unappreciated key function of MALT1 protease activity in immune homeostasis and underline its relevance in human health and disease.
Resumo:
Mycoplasma bovis is an emerging bacterial agent causing bovine mastitis. Although these cell wall-free bacteria lack classical virulence factors, they are able to activate the immune system of the host. However, effects on the bovine mammary immune system are not yet well characterized and detailed knowledge would improve the prevention and therapy of mycoplasmal mastitis. The aim of this study was to investigate the immunogenic effects of M. bovis on the mammary gland in an established primary bovine mammary epithelial cell (bMEC) culture system. Primary bMEC of four different cows were challenged with live and heat-inactivated M. bovis strain JF4278 isolated from acute bovine mastitis, as well as with the type strain PG45. The immune response was evaluated 6 and 24h after mycoplasmal challenge by measuring the relative mRNA expression of selected immune factors by quantitative PCR. M. bovis triggered an immune response in bMEC, reflected by the upregulation of tumor necrosis factor-α, interleukin(IL)-1β, IL-6, IL-8, lactoferrin, Toll-like receptor-2, RANTES, and serum amyloid A mRNA. Interestingly, this cellular reaction was only observed in response to live, but not to heat-inactivated M. bovis, in contrast to other bacterial pathogens of mastitis such as Staphylococcus aureus. This study provides evidence that bMEC exhibit a strong inflammatory reaction in response to live M. bovis. The lack of a cellular response to heat-inactivated M. bovis supports the current hypothesis that mycoplasmas activate the immune system through secreted secondary metabolites.
Resumo:
Lindane, or γ-hexachlorocyclohexane, is a chlorinated hydrocarbon pesticide that was banned from U.S. production in 1976, but until recently continued to be imported and applied for occupational and domestic purposes. Lindane is known to cause central nervous system (CNS), immune, cardiovascular, reproductive, liver, and kidney toxicity. The mechanism for which lindane interacts with the CNS has been elucidated, and involves antagonism of the γ-aminobutyric acid/benzodiazepine (GABAA/BZD) receptor. Antagonism of this receptor results in the inhibition of Cl- channel flux, with subsequent convulsions, seizures, and paralysis. This response makes lindane a desirable defense against arthropod pests in agriculture and the home. However, formulation and application of this compound can contribute to human toxicity. In conjunction with this exposure scenario, workers may be subject to both heat and physical stress that may increase their susceptibility to pesticide toxicity by altering their cellular stress response. The kidneys are responsible for maintaining osmotic homeostasis, and are exposed to agents that undergo urinary excretion. The mechanistic action of lindane on the kidneys is not well understood. Lindane, in other organ systems, has been shown to cause cellular damage by generation of free radicals and oxidative stress. Previous research in our laboratory has shown that lindane causes apoptosis in distal tubule cells, and delays renal stress response under hypertonic stress. Characterizing the mechanism of action of lindane under conditions of physiologic stress is necessary to understand the potential hazard cyclodiene pesticides and other organochlorine compounds pose to exposed individuals under baseline conditions, as well as under conditions of physiologic stress. We demonstrated that exposure to lindane results in oxidative damage and dysregulation of glutathione response in renal distal tubule (MDCK) cells. We showed that under conditions of hypertonic stress, lindane-induced oxidative stress resulted in early onset apoptosis and corresponding down-regulated expression of the anti-apoptotic protein, Bcl-xL. Thus, the interaction of lindane with renal peripheral benzodiazepine receptors (PBR) is associated with attenuation of cellular protective proteins, making the cell more susceptible to injury or death. ^
Resumo:
Proviral integration site for Moloney murine leukemia virus (Pim) kinases are Ser/Thr/Tyr kinases. They modulate B-cell development but become oncoproteins and promote cancer development once overexpressed. Containing three isoforms, Pim-1, -2 and -3 are known to phosphorylate various substrates that regulate transcription, translation, cell cycle, and survival pathways in both hematological and solid tumors. Mantle cell lymphoma (MCL) is an aggressive B-cell lymphoma. Elevated Pim kinase levels are common in MCL, and it negatively correlates with patient outcome. SGI-1776 is a small molecule inhibitor selective for Pim-1/-3. We hypothesize that SGI-1776 treatment in MCL will inhibit Pim kinase function, and inhibition of downstream substrates phosphorylation will disrupt transcriptional, translational, and cell cycle processes while promoting apoptosis. SGI-1776 treatment induced moderate to high levels of apoptosis in four MCL cell lines (JeKo-1, Mino, SP-53 and Granta-519) and peripheral blood mononuclear cells (PBMCs) from MCL patients. Phosphorylation of transcription and translation regulators, c-Myc and 4E-BP1 declined in both model systems. Additionally, levels of short-lived Mcl-1 mRNA and protein also decreased and correlated with decline of global RNA synthesis. Collectively, our investigations highlight Pim kinases as viable drug targets in MCL and emphasize their roles in transcriptional and translational regulation. We further investigated a combination strategy using SGI-1776 with bendamustine, an FDA-approved DNA-damaging alkylating agent for treating non-Hodgkin’s lymphoma. We hypothesized this combination will enhance SGI-1776-induced transcription and translation inhibition, while promoting bendamustine-triggered DNA damage and inducing additive to synergistic cytotoxicity in B-cell lymphoma. Bendamustine alone resulted in moderate levels of apoptosis induction in MCL cell lines (JeKo-1 and Mino), and in MCL and splenic marginal zone lymphoma (a type of B-cell lymphoma) primary cells. An additive effect in cell killing was observed when combined with SGI-1776. Expectedly, SGI-1776 effectively decreased global RNA and protein synthesis levels, while bendamustine significantly inhibited DNA synthesis and generated DNA damage response. In combination, intensified inhibitory effects in DNA, RNA and protein syntheses were observed. Together, these data suggested feasibility of using Pim kinase inhibitor in combination with chemotherapeutic agents such as bendamustine in B-cell lymphoma, and provided foundation of their mechanism of actions in lymphoma cells.
Resumo:
The impact of pCO2 driven ocean acidification on marine bivalve immunity remains poorly understood. To date, this impact has only been investigated in a few bivalve species and the underlying molecular mechanism remains unknown. In the present study, the effects of the realistic future ocean pCO2 levels (pH at 8.1, 7.8, and 7.4) on the total number of haemocyte cells (THC), phagocytosis status, blood cell types composition, and expression levels of twelve genes from the NF-kappa beta signaling and toll-like receptor pathways of a typical bottom burrowing bivalve, blood clam (Tegillarca granosa), were investigated. The results obtained showed that while both THC number and phagocytosis frequency were significantly reduced, the percentage of red and basophil granulocytes were significantly decreased and increased, respectively, upon exposure to elevated pCO2. In addition, exposure to pCO2 acidified seawater generally led to a significant down-regulation in the inducer and key response genes of NF-kappa beta signaling and toll-like receptor pathways. The results of the present study revealed that ocean acidification may hamper immune responses of the bivalve T. granosa which subsequently render individuals more susceptible to pathogens attacks such as those from virus and bacteria.
Resumo:
In pre-B lymphocytes, productive rearrangement of Ig light chain genes allows assembly of the B cell receptor (BCR), which selectively promotes further developmental maturation through poorly defined transmembrane signaling events. Using a novel in vitro system to study immune tolerance during development, we find that BCR reactivity to auto-antigen blocks this positive selection, preventing down-regulation of light chain gene recombination and promoting secondary light chain gene rearrangements that often alter BCR specificity, a process called receptor editing. Under these experimental conditions, self-antigen induces secondary light chain gene rearrangements in at least two-thirds of autoreactive immature B cells, but fails to accelerate cell death at this stage. These data suggest that in these cells the mechanism of immune tolerance is receptor selection rather than clonal selection.
Resumo:
CD38 ligation on mouse B cells by CS/2, an anti-mouse CD38 mAb, induced proliferation, interleukin 5 (IL-5) receptor α chain expression, and tyrosine phosphorylation of Bruton tyrosine kinase (Btk) from wild-type, but not from X chromosome-linked, immunodeficient mice. B cells from fyn-deficient (Fyn−/−) and lyn-deficient (Lyn−/−) mice showed an impaired response to mAb CS/2 for proliferation and IL-5 receptor α chain expression, and B cells from fyn/lyn double-deficient (Fyn/Lyn−/−) mice did not respond at all to mAb CS/2. The Btk activation by CD38 ligation was observed in B cells from Fyn−/− mice, and it was severely impaired in B cells from Lyn−/− and Fyn/Lyn−/− mice. CD38 expression on B cells from three mutant strains was comparable to that on control B cells. We infer from these results that both Fyn and Lyn are required and that their signals are synergistic for B cell triggering after CD38 ligation. Lyn is upstream of Btk activation in the CD38 signaling. Stimulation of B cells with IL-5 together with CD38 ligation induces not only IgM but also IgG1 secretion. Analysis of the synergistic effects of IL-5 and CD38 ligation on IgG1 secretion revealed the impaired IgG1 secretion of B cells from Lyn−/− and Fyn/Lyn−/− mice. These data imply that Lyn is involved in B cell triggering by CD38 ligation plus IL-5 for isotype switching.
Resumo:
The protooncogene c-abl encodes a nonreceptor tyrosine kinase whose cellular function is unknown. To study the possible involvement of c-Abl in proliferation, differentiation, and cell cycle regulation of early B cells, long-term lymphoid bone marrow cultures were established from c-abl-deficient mice and their wild-type littermates. Interleukin 7-dependent progenitor B-cell clones and lines expressing B220 and CD43 could be generated from both mutant and wild-type mice. The mutant and wild-type lines displayed no difference in their proliferative capacity as measured by thymidine incorporation in response to various concentrations of interleukin 7. Similarly, c-abl deficiency did not interfere with the ability of mutant clones to differentiate into surface IgM-positive cells in vitro. Analysis of cultures after growth factor deprivation, however, revealed a strikingly accelerated rate of cell death in c-abl mutant cells, due to apoptosis as confirmed by terminal deoxynucleotidyltransferase-mediated UTP nick end labeling analysis. Furthermore, a greater susceptibility to apoptotic cell death in c-abl mutant cells was also observed after glucocorticoid treatment. These results suggest that mutant c-Abl renders the B-cell progenitors more sensitive to apoptosis, and may account for some of the phenotypes observed in c-abl-deficient animals.
Resumo:
Mutations in Btk result in the B cell immunodeficiencies X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (xid) in mice. Btk is a critical component of signaling pathways regulating B cell development and function. We used a genetic approach to determine whether Btk is also limiting for these processes. One allele of a murine Btk transgene expressed a dosage of Btk (25% of endogenous levels in splenic B cells) sufficient to restore normal numbers of phenotypically mature conventional B cells in xid mice. 2,4,6-trinitrophenyl–Ficoll response, anti-IgM-induced proliferation, B1 cell development, and serum IgM and IgG3 levels remained significantly impaired in these animals. B cells from Btk −/− transgenic mice also responded poorly to anti-IgM, indicating that the xid mutation does not create a dominant negative form of Btk. Response to 2,4,6-trinitrophenyl–Ficoll and B cell receptor cross-linking were increased 3- to 4-fold in xid mice homozygous for the transgene. These results demonstrate that Btk is a limiting component of B cell antigen receptor signaling pathways and suggest that B cell development and response to antigen may require different levels of Btk activity.
Resumo:
Inhibitory killer Ig-like receptors (KIR) at the surface of natural killer (NK) cells induced clustering of HLA-C at the contacting surface of target cells. In this manner, inhibitory immune synapses were formed as human NK cells surveyed target cells. At target/NK cell synapses, HLA-C/KIR distributed into rings around central patches of intercellular adhesion molecule-1/lymphocyte function-associated antigen-1, the opposite orientation to mature murine T cell-activating synapses. This organization of protein was stable for at least 20 min. Cells could support multiple synapses simultaneously, and clusters of HLA-C moved as NK cells crawled over target cells. Clustering required a divalent metal cation, explaining how metal chelators inhibit KIR function. Surprisingly, however, formation of inhibitory synapses was unaffected by ATP depletion and the cytoskeletal inhibitors, colchicine and cytochalsins B and D. Clearly, supramolecular organization within plasma membranes is critical for NK cell immunosurveillance.
Resumo:
Recognition of self is emerging as a theme for the immune recognition of human cancer. One question is whether the immune system can actively respond to normal tissue autoantigens expressed by cancer cells. A second but related question is whether immune recognition of tissue autoantigens can actually induce tumor rejection. To address these issues, a mouse model was developed to investigate immune responses to a melanocyte differentiation antigen, tyrosinase-related protein 1 (or gp75), which is the product of the brown locus. In mice, immunization with purified syngeneic gp75 or syngeneic cells expressing gp75 failed to elicit antibody or cytotoxic T-cell responses to gp75, even when different immune adjuvants and cytokines were included. However, immunization with altered sources of gp75 antigen, in the form of either syngeneic gp75 expressed in insect cells or human gp75, elicited autoantibodies to gp75. Immunized mice rejected metastatic melanomas and developed patchy depigmentation in their coats. These studies support a model of tolerance maintained to a melanocyte differentiation antigen where tolerance can be broken by presenting sources of altered antigen (e.g., homologous xenogeneic protein or protein expressed in insect cells). Immune responses induced with these sources of altered antigen reacted with various processed forms of native, syngeneic protein and could induce both tumor rejection and autoimmunity.
Resumo:
Analysis of the antitumor immune response after gene transfer of a foreign major histocompatibility complex class I protein, HLA-B7, was performed. Ten HLA-B7-negative patients with stage IV melanoma were treated in an effort to stimulate local tumor immunity. Plasmid DNA was detected within treated tumor nodules, and RNA encoding recombinant HLA-B7 or HLA-B7 protein was demonstrated in 9 of 10 patients. T cell migration into treated lesions was observed and tumor-infiltrating lymphocyte reactivity was enhanced in six of seven and two of two patients analyzed, respectively. In contrast, the frequency of cytotoxic T lymphocyte against autologous tumor in circulating peripheral blood lymphocytes was not altered significantly, suggesting that peripheral blood lymphocyte reactivity is not indicative of local tumor responsiveness. Local inhibition of tumor growth was detected after gene transfer in two patients, one of whom showed a partial remission. This patient subsequently received treatment with tumor-infiltrating lymphocytes derived from gene-modified tumor, with a complete regression of residual disease. Thus, gene transfer with DNA–liposome complexes encoding an allogeneic major histocompatibility complex protein stimulated local antitumor immune responses that facilitated the generation of effector cells for immunotherapy of cancer.
Resumo:
Antigen receptors (BCRs) on developing B lymphocytes play two opposing roles—promoting survival of cells that may later bind a foreign antigen and inhibiting survival of cells that bind too strongly to self-antigens. It is not known how these opposing outcomes are signaled by BCRs on immature B cells. Here we analyze the effect of a null mutation in the Syk tyrosine kinase on maturing B cells displaying a transgene-encoded BCR that binds hen egg lysozyme (HEL). In the absence of HEL antigen, HEL-specific BCRs are expressed normally on the surface of Syk-deficient immature B-lineage cells, but this fails to promote maturation beyond the earliest stages of B-lineage commitment. Binding of HEL antigen, nevertheless, triggers phosphorylation of CD79α/β BCR subunits and modulation of receptors from the surface in Syk-deficient cells, but it cannot induce an intracellular calcium response. Continuous binding of low- or high-avidity forms of HEL, expressed as self-antigens, fails to restore the signal needed for maturation. Compared with the effects in the same system of null mutations in other BCR signaling elements, such as CD45 and Lyn kinase, these results indicate that Syk is essential for transmitting a signal that initiates the program of B-lymphocyte maturation.
Resumo:
Memory is a hallmark of immunity. Memory carried by antibodies is largely responsible for protection against reinfection with most known acutely lethal infectious agents and is the basis for most clinically successful vaccines. However, the nature of long-term B cell and antibody memory is still unclear. B cell memory was studied here after infection of mice with the rabies-like cytopathic vesicular stomatitis virus, the noncytopathic lymphocytic choriomeningitis virus (Armstrong and WE), and after immunization with various inert viral antigens inducing naive B cells to differentiate either to plasma cells or memory B cells in germinal centers of secondary lymphoid organs. The results show that in contrast to very low background levels against internal viral antigens, no significant neutralizing antibody memory was observed in the absence of antigen and suggest that memory B cells (i) are long-lived in the absence of antigen, nondividing, and relatively resistant to irradiation, and (ii) must be stimulated by antigen to differentiate to short-lived antibody-secreting plasma cells, a process that is also efficient in the bone marrow and always depends on radiosensitive, specific T help. Therefore, for vaccines to induce long-term protective antibody titers, they need to repeatedly provide, or continuously maintain, antigen in minimal quantities over a prolonged time period in secondary lymphoid organs or the bone marrow for sufficient numbers of long-lived memory B cells to mature to short-lived plasma cells.