909 resultados para Measurement error models
Resumo:
Background Existing lower-limb, region-specific, patient-reported outcome measures have clinimetric limitations, including limitations in psychometric characteristics (eg, lack of internal consistency, lack of responsiveness, measurement error) and the lack of reported practical and general characteristics. A new patient-reported outcome measure, the Lower Limb Functional Index (LLFI), was developed to address these limitations. Objective The purpose of this study was to overcome recognized deficiencies in existing lower-limb, region-specific, patient-reported outcome measures through: (1) development of a new lower-extremity outcome scale (ie, the LLFI) and (2) evaluation of the clinimetric properties of the LLFI using the Lower Extremity Functional Scale (LEFS) as a criterion measure. Design This was a prospective observational study. Methods The LLFI was developed in a 3-stage process of: (1) item generation, (2) item reduction with an expert panel, and (3) pilot field testing (n=18) for reliability, responsiveness, and sample size requirements for a larger study. The main study used a convenience sample (n=127) from 10 physical therapy clinics. Participants completed the LLFI and LEFS every 2 weeks for 6 weeks and then every 4 weeks until discharge. Data were used to assess the psychometric, practical, and general characteristics of the LLFI and the LEFS. The characteristics also were evaluated for overall performance using the Measurement of Outcome Measures and Bot clinimetric assessment scales. Results The LLFI and LEFS demonstrated a single-factor structure, comparable reliability (intraclass correlation coefficient [2,1]=.97), scale width, and high criterion validity (Pearson r=.88, with 95% confidence interval [CI]). Clinimetric performance was higher for the LLFI compared with the LEFS on the Measurement of Outcome Measures scale (96% and 95%, respectively) and the Bot scale (100% and 83%, respectively). The LLFI, compared with the LEFS, had improved responsiveness (standardized response mean=1.75 and 1.64, respectively), minimal detectable change with 90% CI (6.6% and 8.1%, respectively), and internal consistency (α=.91 and .95, respectively), as well as readability with reduced user error and completion and scoring times. Limitations Limitations of the study were that only participants recruited from outpatient physical therapy clinics were included and that no specific conditions or diagnostic subgroups were investigated. Conclusion The LLFI demonstrated sound clinimetric properties. There was lower response error, efficient completion and scoring, and improved responsiveness and overall performance compared with the LEFS. The LLFI is suitable for assessment of lower-limb function.
Resumo:
We report on the wind radiometer WIRA, a new ground-based microwave Doppler-spectro-radiometer specifically designed for the measurement of middle-atmospheric horizontal wind by observing ozone emission spectra at 142.17504 GHz. Currently, wind speeds in five levels between 30 and 79 km can be retrieved which makes WIRA the first instrument able to continuously measure horizontal wind in this altitude range. For an integration time of one day the measurement error on each level lies at around 25 m s−1. With a planned upgrade this value is expected to be reduced by a factor of 2 in the near future. On the altitude levels where our measurement can be compared to wind data from the European Centre for Medium-Range Weather Forecasts (ECMWF) very good agreement in the long-term statistics as well as in short time structures with a duration of a few days has been found. WIRA uses a passive double sideband heterodyne receiver together with a digital Fourier transform spectrometer for the data acquisition. A big advantage of the radiometric approach is that such instruments can also operate under adverse weather conditions and thus provide a continuous time series for the given location. The optics enables the instrument to scan a wide range of azimuth angles including the directions east, west, north, and south for zonal and meridional wind measurements. The design of the radiometer is fairly compact and its calibration does not rely on liquid nitrogen which makes it transportable and suitable for campaign use. WIRA is conceived in a way that it can be operated remotely and does hardly require any maintenance. In the present paper, a description of the instrument is given, and the techniques used for the wind retrieval based on the determination of the Doppler shift of the measured atmospheric ozone emission spectra are outlined. Their reliability was tested using Monte Carlo simulations. Finally, a time series of 11 months of zonal wind measurements over Bern (46°57′ N, 7°26′ E) is presented and compared to ECMWF wind data.
Resumo:
With recent advances in mass spectrometry techniques, it is now possible to investigate proteins over a wide range of molecular weights in small biological specimens. This advance has generated data-analytic challenges in proteomics, similar to those created by microarray technologies in genetics, namely, discovery of "signature" protein profiles specific to each pathologic state (e.g., normal vs. cancer) or differential profiles between experimental conditions (e.g., treated by a drug of interest vs. untreated) from high-dimensional data. We propose a data analytic strategy for discovering protein biomarkers based on such high-dimensional mass-spectrometry data. A real biomarker-discovery project on prostate cancer is taken as a concrete example throughout the paper: the project aims to identify proteins in serum that distinguish cancer, benign hyperplasia, and normal states of prostate using the Surface Enhanced Laser Desorption/Ionization (SELDI) technology, a recently developed mass spectrometry technique. Our data analytic strategy takes properties of the SELDI mass-spectrometer into account: the SELDI output of a specimen contains about 48,000 (x, y) points where x is the protein mass divided by the number of charges introduced by ionization and y is the protein intensity of the corresponding mass per charge value, x, in that specimen. Given high coefficients of variation and other characteristics of protein intensity measures (y values), we reduce the measures of protein intensities to a set of binary variables that indicate peaks in the y-axis direction in the nearest neighborhoods of each mass per charge point in the x-axis direction. We then account for a shifting (measurement error) problem of the x-axis in SELDI output. After these pre-analysis processing of data, we combine the binary predictors to generate classification rules for cancer, benign hyperplasia, and normal states of prostate. Our approach is to apply the boosting algorithm to select binary predictors and construct a summary classifier. We empirically evaluate sensitivity and specificity of the resulting summary classifiers with a test dataset that is independent from the training dataset used to construct the summary classifiers. The proposed method performed nearly perfectly in distinguishing cancer and benign hyperplasia from normal. In the classification of cancer vs. benign hyperplasia, however, an appreciable proportion of the benign specimens were classified incorrectly as cancer. We discuss practical issues associated with our proposed approach to the analysis of SELDI output and its application in cancer biomarker discovery.
Resumo:
The purpose of this study is to develop statistical methodology to facilitate indirect estimation of the concentration of antiretroviral drugs and viral loads in the prostate gland and the seminal vesicle. The differences in antiretroviral drug concentrations in these organs may lead to suboptimal concentrations in one gland compared to the other. Suboptimal levels of the antiretroviral drugs will not be able to fully suppress the virus in that gland, lead to a source of sexually transmissible virus and increase the chance of selecting for drug resistant virus. This information may be useful selecting antiretroviral drug regimen that will achieve optimal concentrations in most of male genital tract glands. Using fractionally collected semen ejaculates, Lundquist (1949) measured levels of surrogate markers in each fraction that are uniquely produced by specific male accessory glands. To determine the original glandular concentrations of the surrogate markers, Lundquist solved a simultaneous series of linear equations. This method has several limitations. In particular, it does not yield a unique solution, it does not address measurement error, and it disregards inter-subject variability in the parameters. To cope with these limitations, we developed a mechanistic latent variable model based on the physiology of the male genital tract and surrogate markers. We employ a Bayesian approach and perform a sensitivity analysis with regard to the distributional assumptions on the random effects and priors. The model and Bayesian approach is validated on experimental data where the concentration of a drug should be (biologically) differentially distributed between the two glands. In this example, the Bayesian model-based conclusions are found to be robust to model specification and this hierarchical approach leads to more scientifically valid conclusions than the original methodology. In particular, unlike existing methods, the proposed model based approach was not affected by a common form of outliers.
Resumo:
Spacecraft formation flying navigation continues to receive a great deal of interest. The research presented in this dissertation focuses on developing methods for estimating spacecraft absolute and relative positions, assuming measurements of only relative positions using wireless sensors. The implementation of the extended Kalman filter to the spacecraft formation navigation problem results in high estimation errors and instabilities in state estimation at times. This is due tp the high nonlinearities in the system dynamic model. Several approaches are attempted in this dissertation aiming at increasing the estimation stability and improving the estimation accuracy. A differential geometric filter is implemented for spacecraft positions estimation. The differential geometric filter avoids the linearization step (which is always carried out in the extended Kalman filter) through a mathematical transformation that converts the nonlinear system into a linear system. A linear estimator is designed in the linear domain, and then transformed back to the physical domain. This approach demonstrated better estimation stability for spacecraft formation positions estimation, as detailed in this dissertation. The constrained Kalman filter is also implemented for spacecraft formation flying absolute positions estimation. The orbital motion of a spacecraft is characterized by two range extrema (perigee and apogee). At the extremum, the rate of change of a spacecraft’s range vanishes. This motion constraint can be used to improve the position estimation accuracy. The application of the constrained Kalman filter at only two points in the orbit causes filter instability. Two variables are introduced into the constrained Kalman filter to maintain the stability and improve the estimation accuracy. An extended Kalman filter is implemented as a benchmark for comparison with the constrained Kalman filter. Simulation results show that the constrained Kalman filter provides better estimation accuracy as compared with the extended Kalman filter. A Weighted Measurement Fusion Kalman Filter (WMFKF) is proposed in this dissertation. In wireless localizing sensors, a measurement error is proportional to the distance of the signal travels and sensor noise. In this proposed Weighted Measurement Fusion Kalman Filter, the signal traveling time delay is not modeled; however, each measurement is weighted based on the measured signal travel distance. The obtained estimation performance is compared to the standard Kalman filter in two scenarios. The first scenario assumes using a wireless local positioning system in a GPS denied environment. The second scenario assumes the availability of both the wireless local positioning system and GPS measurements. The simulation results show that the WMFKF has similar accuracy performance as the standard Kalman Filter (KF) in the GPS denied environment. However, the WMFKF maintains the position estimation error within its expected error boundary when the WLPS detection range limit is above 30km. In addition, the WMFKF has a better accuracy and stability performance when GPS is available. Also, the computational cost analysis shows that the WMFKF has less computational cost than the standard KF, and the WMFKF has higher ellipsoid error probable percentage than the standard Measurement Fusion method. A method to determine the relative attitudes between three spacecraft is developed. The method requires four direction measurements between the three spacecraft. The simulation results and covariance analysis show that the method’s error falls within a three sigma boundary without exhibiting any singularity issues. A study of the accuracy of the proposed method with respect to the shape of the spacecraft formation is also presented.
Resumo:
In-cylinder pressure transducers have been used for decades to record combustion pressure inside a running engine. However, due to the extreme operating environment, transducer design and installation must be considered in order to minimize measurement error. One such error is caused by thermal shock, where the pressure transducer experiences a high heat flux that can distort the pressure transducer diaphragm and also change the crystal sensitivity. This research focused on investigating the effects of thermal shock on in-cylinder pressure transducer data quality using a 2.0L, four-cylinder, spark-ignited, direct-injected, turbo-charged GM engine. Cylinder four was modified with five ports to accommodate pressure transducers of different manufacturers. They included an AVL GH14D, an AVL GH15D, a Kistler 6125C, and a Kistler 6054AR. The GH14D, GH15D, and 6054AR were M5 size transducers. The 6125C was a larger, 6.2mm transducer. Note that both of the AVL pressure transducers utilized a PH03 flame arrestor. Sweeps of ignition timing (spark sweep), engine speed, and engine load were performed to study the effects of thermal shock on each pressure transducer. The project consisted of two distinct phases which included experimental engine testing as well as simulation using a commercially available software package. A comparison was performed to characterize the quality of the data between the actual cylinder pressure and the simulated results. This comparison was valuable because the simulation results did not include thermal shock effects. All three sets of tests showed the peak cylinder pressure was basically unaffected by thermal shock. Comparison of the experimental data with the simulated results showed very good correlation. The spark sweep was performed at 1300 RPM and 3.3 bar NMEP and showed that the differences between the simulated results (no thermal shock) and the experimental data for the indicated mean effective pressure (IMEP) and the pumping mean effective pressure (PMEP) were significantly less than the published accuracies. All transducers had an IMEP percent difference less than 0.038% and less than 0.32% for PMEP. Kistler and AVL publish that the accuracy of their pressure transducers are within plus or minus 1% for the IMEP (AVL 2011; Kistler 2011). In addition, the difference in average exhaust absolute pressure between the simulated results and experimental data was the greatest for the two Kistler pressure transducers. The location and lack of flame arrestor are believed to be the cause of the increased error. For the engine speed sweep, the torque output was held constant at 203 Nm (150 ft-lbf) from 1500 to 4000 RPM. The difference in IMEP was less than 0.01% and the PMEP was less than 1%, except for the AVL GH14D which was 5% and the AVL GH15DK which was 2.25%. A noticeable error in PMEP appeared as the load increased during the engine speed sweeps, as expected. The load sweep was conducted at 2000 RPM over a range of NMEP from 1.1 to 14 bar. The difference in IMEP values were less 0.08% while the PMEP values were below 1% except for the AVL GH14D which was 1.8% and the AVL GH15DK which was at 1.25%. In-cylinder pressure transducer data quality was effectively analyzed using a combination of experimental data and simulation results. Several criteria can be used to investigate the impact of thermal shock on data quality as well as determine the best location and thermal protection for various transducers.
Resumo:
This section presents abstracts of three studies on how consumer choices can be influenced by the name letter effect of brands without decision makers being aware of this influence. The first paper examined whether making brand names similar to consumers' names increases the likelihood that consumers will choose the brand. One prediction is that people will prefer and be more likely to choose products or services whose names prominently feature the letters in their own first or last names. The results showed that subjects' preference rankings and evaluations of name letter matching brands were higher than those of non-name letter matching brands. The second paper tested the possibility of using subliminal priming to activate a concept that a persuasive communicator could take advantage of. To examine the idea, two experiments were presented. In the first experiment, participants' level of thirst were manipulated and then subliminally presented them with either thirst-related words or control words. While the manipulations had no effect on participants' self-reported, conscious ratings of thirst, there was a significant interactive effect of the two factors on how much of the drink provided in the taste test was consumed. In a second, follow up experiment, thirsty participants were subliminally presented with either thirst-related words or control words after which they viewed advertisements for two new sports beverages. In conclusion, the research demonstrates that under certain conditions, subliminal printing techniques can enhance persuasion. The third paper hypothesized that the lack of correlations between implicit and explicit evaluations is due to measurement error.
Resumo:
Middle atmospheric water vapour can be used as a tracer for dynamical processes. It is mainly measured by satellite instruments and ground-based microwave radiometers. Ground-based instruments capable of measuring middle-atmospheric water vapour are sparse but valuable as they complement satellite measurements, are relatively easy to maintain and have a long lifetime. MIAWARA-C is a ground-based microwave radiometer for middle-atmospheric water vapour designed for use on measurement campaigns for both atmospheric case studies and instrument intercomparisons. MIAWARA-C's retrieval version 1.1 (v1.1) is set up in a such way as to provide a consistent data set even if the instrument is operated from different locations on a campaign basis. The sensitive altitude range for v1.1 extends from 4 hPa (37 km) to 0.017 hPa (75 km). For v1.1 the estimated systematic error is approximately 10% for all altitudes. At lower altitudes it is dominated by uncertainties in the calibration, with altitude the influence of spectroscopic and temperature uncertainties increases. The estimated random error increases with altitude from 5 to 25%. MIAWARA-C measures two polarisations of the incident radiation in separate receiver channels, and can therefore provide two measurements of the same air mass with independent instrumental noise. The standard deviation of the difference between the profiles obtained from the two polarisations is in excellent agreement with the estimated random measurement error of v1.1. In this paper, the quality of v1.1 data is assessed for measurements obtained at two different locations: (1) a total of 25 months of measurements in the Arctic (Sodankylä, 67.37° N, 26.63° E) and (2) nine months of measurements at mid-latitudes (Zimmerwald, 46.88° N, 7.46° E). For both locations MIAWARA-C's profiles are compared to measurements from the satellite experiments Aura MLS and MIPAS. In addition, comparisons to ACE-FTS and SOFIE are presented for the Arctic and to the ground-based radiometer MIAWARA for the mid-latitude campaigns. In general, all intercomparisons show high correlation coefficients, confirming the ability of MIAWARA-C to monitor temporal variations of the order of days. The biases are generally below 13% and within the estimated systematic uncertainty of MIAWARA-C. No consistent wet or dry bias is identified for MIAWARA-C. In addition, comparisons to the reference instruments indicate the estimated random error of v1.1 to be a realistic measure of the random variation on the retrieved profile between 45 and 70 km.
Resumo:
Purpose: Homeopathic preparations are used in homeopathy and anthroposophically extended medicine. Previous studies described differences in UV transmission between homeopathic preparations of CuSO4 and controls. The aim of the present study was to investigate whether statistically significant differences can be found between homeopathic verum and placebo globules by UV spectroscopy. Methods: Verum (aconitum 30c, calcium carbonate/quercus e cortice) and placebo globules used in two previous clinical trials were dissolved in distilled water at 10mg/ml 20-23h prior to the measurements. Absorbance was measured at 190 – 340nm with a Shimadzu UV-1800 double beam spectrophotometer. Duplicates of each sample were measured in a randomized order 4 times on each of the 5 measurement days. To correct for differences between measurement days, average absorbance of all samples on one day was deduced from absorbance of the individual samples. The Kruskal-Wallis test was used to determine group differences between the samples, and finally the coding of the samples was revealed. Results: First analysis showed significant differences (p≤0.05) in average UV absorbance at 200 – 290nm between the samples and a tendency of a correlation (p≤0.1) between absorbance and globule weight. More results will be presented at the conference. Conclusion: Since the absorbance of the samples at the wavelengths between 200 and 290nm was small, a number of aspects had to be considered and should be corrected for if they are present when performing UV spectroscopy on homeopathic globules: 1. Exact weighing of the globules. 2. Measurement error of the spectrophotometer at small absorbances. 3. Drift of the spectrophotometer during a measurement day. 4. Differences between measurement days. The question remains what caused the differences in absorbance found in these experiments: the use of the original material for the production of the verum globules, differences in the production of verum and placebo globules, or other context factors.
Resumo:
Histomorphometric evaluation of the buccal aspects of periodontal tissues in rodents requires reproducible alignment of maxillae and highly precise sections containing central sections of buccal roots; this is a cumbersome and technically sensitive process due to the small specimen size. The aim of the present report is to describe and analyze a method to transfer virtual sections of micro-computer tomographic (CT)-generated image stacks to the microtome for undecalcified histological processing and to describe the anatomy of the periodontium in rat molars. A total of 84 undecalcified sections of all buccal roots of seven untreated rats was analyzed. The accuracy of section coordinate transfer from virtual micro-CT slice to the histological slice, right-left side differences and the measurement error for linear and angular measurements on micro-CT and on histological micrographs were calculated using the Bland-Altman method, interclass correlation coefficient and the method of moments estimator. Also, manual alignment of the micro-CT-scanned rat maxilla was compared with multiplanar computer-reconstructed alignment. The supra alveolar rat anatomy is rather similar to human anatomy, whereas the alveolar bone is of compact type and the keratinized gingival epithelium bends apical to join the junctional epithelium. The high methodological standardization presented herein ensures retrieval of histological slices with excellent display of anatomical microstructures, in a reproducible manner, minimizes random errors, and thereby may contribute to the reduction of number of animals needed.
Resumo:
Web surveys are becoming increasingly popular in survey research. Compared with face-to-face, telephone and mail surveys, web surveys may contain a different and new source of measurement error and bias: the type of device that respondents use to answer the survey questions. To the best of our knowledge, this is the first study that tests whether the use of mobile devices affects survey characteristics and stated preferences in a web-based choice experiment. The web survey was carried out in Germany with 3,400 respondents, of which 12 per cent used a mobile device (i.e. tablet or smartphone), and comprised a stated choice experiment on externalities of renewable energy production using wind, solar and biomass. Our main finding is that survey characteristics such as interview length and acquiescence tendency are affected by the device used. In contrast to what might be expected, we find that, compared with respondents using desktop computers and laptops, mobile device users spent more time to answer the survey and are less likely to be prone to acquiescence bias. In the choice experiment, mobile device users tended to be more consistent in their stated choices, and there are differences in willingness to pay between both subsamples.
Resumo:
Behavior is one of the most important indicators for assessing cattle health and well-being. The objective of this study was to develop and validate a novel algorithm to monitor locomotor behavior of loose-housed dairy cows based on the output of the RumiWatch pedometer (ITIN+HOCH GmbH, Fütterungstechnik, Liestal, Switzerland). Data of locomotion were acquired by simultaneous pedometer measurements at a sampling rate of 10 Hz and video recordings for manual observation later. The study consisted of 3 independent experiments. Experiment 1 was carried out to develop and validate the algorithm for lying behavior, experiment 2 for walking and standing behavior, and experiment 3 for stride duration and stride length. The final version was validated, using the raw data, collected from cows not included in the development of the algorithm. Spearman correlation coefficients were calculated between accelerometer variables and respective data derived from the video recordings (gold standard). Dichotomous data were expressed as the proportion of correctly detected events, and the overall difference for continuous data was expressed as the relative measurement error. The proportions for correctly detected events or bouts were 1 for stand ups, lie downs, standing bouts, and lying bouts and 0.99 for walking bouts. The relative measurement error and Spearman correlation coefficient for lying time were 0.09% and 1; for standing time, 4.7% and 0.96; for walking time, 17.12% and 0.96; for number of strides, 6.23% and 0.98; for stride duration, 6.65% and 0.75; and for stride length, 11.92% and 0.81, respectively. The strong to very high correlations of the variables between visual observation and converted pedometer data indicate that the novel RumiWatch algorithm may markedly improve automated livestock management systems for efficient health monitoring of dairy cows.
Resumo:
Web surveys are becoming increasingly popular in survey research including stated preference surveys. Compared with face-to-face, telephone and mail surveys, web surveys may contain a different and new source of measurement error and bias: the type of device that respondents use to answer the survey questions. This is the first study that tests whether the use of mobile devices, tablets or smartphones, affects survey characteristics and stated preferences in a web-based choice experiment. The web survey on expanding renewable energy production in Germany was carried out with 3182 respondents, of which 12% used a mobile device. Propensity score matching is used to account for selection bias in the use of mobile devices for survey completion. We find that mobile device users spent more time than desktop/laptop users to answer the survey. Yet, desktop/laptop users and mobile device users do not differ in acquiescence tendency as an indicator of extreme response patterns. For mobile device users only, we find a negative correlation between screen size and interview length and a positive correlation between screen size and acquiescence tendency. In the choice experiment data, we do not find significant differences in the tendency to choose the status quo option and scale between both subsamples. However, some of the estimates of implicit prices differ, albeit not in a unidirectional fashion. Model results for mobile device users indicate a U-shaped relationship between error variance and screen size. Together, the results suggest that using mobile devices is not detrimental to survey quality.
Resumo:
Few studies have investigated causal pathways linking psychosocial factors to each other and to screening mammography. Conflicting hypotheses exist in the theoretic literature regarding the role and importance of subjective norms, a person's perceived social pressure to perform the behavior and his/her motivation to comply. The Theory of Reasoned Action (TRA) hypothesizes that subjective norms directly affect intention; while the Transtheoretical Model (TTM) hypothesizes that attitudes mediate the influence of subjective norms on stage of change. No one has examined which hypothesis best predicts the effect of subjective norms on mammography intention and stage of change. Two statistical methods are available for testing mediation, sequential regression analysis (SRA) and latent variable structural equation modeling (LVSEM); however, software to apply LVSEM to dichotomous variables like intention has only recently become available. No one has compared the methods to determine whether or not they yield similar results for dichotomous variables. ^ Study objectives were to: (1) determine whether the effect of subjective norms on mammography intention and stage of change are mediated by pros and cons; and (2) compare mediation results from the SRA and LVSEM approaches when the outcome is dichotomous. We conducted a secondary analysis of data from a national sample of women veterans enrolled in Project H.O.M.E. (H&barbelow;ealthy O&barbelow;utlook on the M&barbelow;ammography E&barbelow;xperience), a behavioral intervention trial. ^ Results showed that the TTM model described the causal pathways better than the TRA one; however, we found support for only one of the TTM causal mechanisms. Cons was the sole mediator. The mediated effect of subjective norms on intention and stage of change by cons was very small. These findings suggest that interventionists focus their efforts on reducing negative attitudes toward mammography when resources are limited. ^ Both the SRA and LVSEM methods provided evidence for complete mediation, and the direction, magnitude, and standard errors of the parameter estimates were very similar. Because SRA parameter estimates were not biased toward the null, we can probably assume negligible measurement error in the independent and mediator variables. Simulation studies are needed to further our understanding of how these two methods perform under different data conditions. ^
Resumo:
The Blood Pressure Study in Mexican Children (BPSMC) is a short term longitudinal study of serial blood pressure collected in three observation periods by standardized examinations of 233 female children, 10 to 12 years of age, enrolled in public and private primary schools in Tlalpan, Mexico. Study objectives were: (1) to describe from baseline information the distribution and relationship of blood pressure to age and selected anthropometric factors, as well as to compare the BPSMC results with other blood pressure studies, (2) to examine the sources and amount of variation present in serial blood pressure of 123 children, and (3) to evaluate observer performance by means of intra- and inter-observer variability.^ Stepwise regression results from baseline revealed that of all anthropometric factors and age, weight was the best predictor for blood pressure.^ The results of serial blood pressure measurements show that, besides the known sources of blood pressure variability (subject, day, reading), the physiologic event of menarche has an important bearing upon the variability and characterization of blood pressure in young girls. The assessment of the effects of blood pressure variability and reliability upon the design and analysis of epidemiologic studies, became apparent among post-menarcheal girls; where blood pressure measurements taken from them have low reliability. Research is needed to propose alternatives for assessing blood pressure during puberty.^ Finally, observer performance of blood pressure and anthropometry were evaluated. Anthropometric measurements had reliabilities in excess of R = 0.96. Acceptable reliabilities (R = 0.88 to 0.95) were obtained for systolic and diastolic (phase 4 and 5) blood pressures. The BPSMC showed a 50 percent decrease in measurement error from the first to the third observation periods. ^