959 resultados para Mathematical-theory
Resumo:
This thesis seeks to elucidate a motif common to the work both of Jean-Paul Sartre and Alain Badiou (with special attention being given to Being and Nothingness and Being and Event respectively): the thesis that the subject 's existence precedes and determines its essence. To this end, the author aims to explicate the structural invariances, common to both philosophies, that allow this thesis to take shape. Their explication requires the construction of an overarching conceptual framework within which it may be possible to embed both the phenomenological ontology elaborated in Being and Event and the mathematical ontology outlined in Being and Event. Within this framework, whose axial concept is that of multiplicity, the precedence of essence by existence becomes intelligible in terms of a priority of extensional over intensional determination. A series of familiar existentialist concepts are reconstructed on this basis, such as lack and value, and these are set to work in the task of fleshing out the more or less skeletal theory of the subject presented in Being and Event.
Resumo:
The purpose of this study was to investigate Howard Gardner's (1983) Multiple Intelligences theory, which proposes that there are eight independent intelligences: Linguistic, Spatial, Logical/Mathematical, Interpersonal, Intrapersonal, Naturalistic, Bodily-Kinesthetic, and Musical. To explore Gardner's theory, two measures of each ability area were administered to 200 participants. Each participant also completed a measure of general cognitive ability, a personality inventory, an ability self-rating scale, and an ability self-report questionnaire. Nonverbal measures were included for most intelligence domains, and a wide range of content was sampled in Gardner's domains. Results showed that all tests of purely cognitive abilities were significantly correlated with the measure of general cognitive ability, whereas Musical, Bodily-Kinesthetic, and one of the Intrapersonal measures were not. Contrary to what Multiple Intelligences theory would seem to predict, correlations among the tests revealed a positive manifold and factor analysis indicated a large factor of general intelligence, with a mathematical reasoning test and a classification task from the Naturalistic domain having the highest ^- loadings. There were only minor sex differences in performance on the ability tests. Participants' self-estimates of ability were significantly and positively correlated with actual performance in some, but not all, intelligences. With regard to personality, a hypothesized association between Openness to Experience and crystallized intelligence was supported. The implications of the findings in regards to the nature of mental abilities were discussed, and recommendations for further research were made.
Resumo:
McCausland (2004a) describes a new theory of random consumer demand. Theoretically consistent random demand can be represented by a \"regular\" \"L-utility\" function on the consumption set X. The present paper is about Bayesian inference for regular L-utility functions. We express prior and posterior uncertainty in terms of distributions over the indefinite-dimensional parameter set of a flexible functional form. We propose a class of proper priors on the parameter set. The priors are flexible, in the sense that they put positive probability in the neighborhood of any L-utility function that is regular on a large subset bar(X) of X; and regular, in the sense that they assign zero probability to the set of L-utility functions that are irregular on bar(X). We propose methods of Bayesian inference for an environment with indivisible goods, leaving the more difficult case of indefinitely divisible goods for another paper. We analyse individual choice data from a consumer experiment described in Harbaugh et al. (2001).
Resumo:
In this thesis we attempt to make a probabilistic analysis of some physically realizable, though complex, storage and queueing models. It is essentially a mathematical study of the stochastic processes underlying these models. Our aim is to have an improved understanding of the behaviour of such models, that may widen their applicability. Different inventory systems with randon1 lead times, vacation to the server, bulk demands, varying ordering levels, etc. are considered. Also we study some finite and infinite capacity queueing systems with bulk service and vacation to the server and obtain the transient solution in certain cases. Each chapter in the thesis is provided with self introduction and some important references
Resumo:
Since no physical system can ever be completely isolated from its environment, the study of open quantum systems is pivotal to reliably and accurately control complex quantum systems. In practice, reliability of the control field needs to be confirmed via certification of the target evolution while accuracy requires the derivation of high-fidelity control schemes in the presence of decoherence. In the first part of this thesis an algebraic framework is presented that allows to determine the minimal requirements on the unique characterisation of arbitrary unitary gates in open quantum systems, independent on the particular physical implementation of the employed quantum device. To this end, a set of theorems is devised that can be used to assess whether a given set of input states on a quantum channel is sufficient to judge whether a desired unitary gate is realised. This allows to determine the minimal input for such a task, which proves to be, quite remarkably, independent of system size. These results allow to elucidate the fundamental limits regarding certification and tomography of open quantum systems. The combination of these insights with state-of-the-art Monte Carlo process certification techniques permits a significant improvement of the scaling when certifying arbitrary unitary gates. This improvement is not only restricted to quantum information devices where the basic information carrier is the qubit but it also extends to systems where the fundamental informational entities can be of arbitary dimensionality, the so-called qudits. The second part of this thesis concerns the impact of these findings from the point of view of Optimal Control Theory (OCT). OCT for quantum systems utilises concepts from engineering such as feedback and optimisation to engineer constructive and destructive interferences in order to steer a physical process in a desired direction. It turns out that the aforementioned mathematical findings allow to deduce novel optimisation functionals that significantly reduce not only the required memory for numerical control algorithms but also the total CPU time required to obtain a certain fidelity for the optimised process. The thesis concludes by discussing two problems of fundamental interest in quantum information processing from the point of view of optimal control - the preparation of pure states and the implementation of unitary gates in open quantum systems. For both cases specific physical examples are considered: for the former the vibrational cooling of molecules via optical pumping and for the latter a superconducting phase qudit implementation. In particular, it is illustrated how features of the environment can be exploited to reach the desired targets.
Resumo:
The biplot has proved to be a powerful descriptive and analytical tool in many areas of applications of statistics. For compositional data the necessary theoretical adaptation has been provided, with illustrative applications, by Aitchison (1990) and Aitchison and Greenacre (2002). These papers were restricted to the interpretation of simple compositional data sets. In many situations the problem has to be described in some form of conditional modelling. For example, in a clinical trial where interest is in how patients’ steroid metabolite compositions may change as a result of different treatment regimes, interest is in relating the compositions after treatment to the compositions before treatment and the nature of the treatments applied. To study this through a biplot technique requires the development of some form of conditional compositional biplot. This is the purpose of this paper. We choose as a motivating application an analysis of the 1992 US President ial Election, where interest may be in how the three-part composition, the percentage division among the three candidates - Bush, Clinton and Perot - of the presidential vote in each state, depends on the ethnic composition and on the urban-rural composition of the state. The methodology of conditional compositional biplots is first developed and a detailed interpretation of the 1992 US Presidential Election provided. We use a second application involving the conditional variability of tektite mineral compositions with respect to major oxide compositions to demonstrate some hazards of simplistic interpretation of biplots. Finally we conjecture on further possible applications of conditional compositional biplots
Resumo:
First discussion on compositional data analysis is attributable to Karl Pearson, in 1897. However, notwithstanding the recent developments on algebraic structure of the simplex, more than twenty years after Aitchison’s idea of log-transformations of closed data, scientific literature is again full of statistical treatments of this type of data by using traditional methodologies. This is particularly true in environmental geochemistry where besides the problem of the closure, the spatial structure (dependence) of the data have to be considered. In this work we propose the use of log-contrast values, obtained by a simplicial principal component analysis, as LQGLFDWRUV of given environmental conditions. The investigation of the log-constrast frequency distributions allows pointing out the statistical laws able to generate the values and to govern their variability. The changes, if compared, for example, with the mean values of the random variables assumed as models, or other reference parameters, allow defining monitors to be used to assess the extent of possible environmental contamination. Case study on running and ground waters from Chiavenna Valley (Northern Italy) by using Na+, K+, Ca2+, Mg2+, HCO3-, SO4 2- and Cl- concentrations will be illustrated
Resumo:
The basis set superposition error-free second-order MØller-Plesset perturbation theory of intermolecular interactions was studied. The difficulties of the counterpoise (CP) correction in open-shell systems were also discussed. The calculations were performed by a program which was used for testing the new variants of the theory. It was shown that the CP correction for the diabatic surfaces should be preferred to the adiabatic ones
Resumo:
In order to explain the speed of Vesicular Stomatitis Virus VSV infections, we develop a simple model that improves previous approaches to the propagation of virus infections. For VSV infections, we find that the delay time elapsed between the adsorption of a viral particle into a cell and the release of its progeny has a very important effect. Moreover, this delay time makes the adsorption rate essentially irrelevant in order to predict VSV infection speeds. Numerical simulations are in agreement with the analytical results. Our model satisfactorily explains the experimentally measured speeds of VSV infections
Resumo:
Mathematical models have been vitally important in the development of technologies in building engineering. A literature review identifies that linear models are the most widely used building simulation models. The advent of intelligent buildings has added new challenges in the application of the existing models as an intelligent building requires learning and self-adjusting capabilities based on environmental and occupants' factors. It is therefore argued that the linearity is an impropriate basis for any model of either complex building systems or occupant behaviours for control or whatever purpose. Chaos and complexity theory reflects nonlinear dynamic properties of the intelligent systems excised by occupants and environment and has been used widely in modelling various engineering, natural and social systems. It is proposed that chaos and complexity theory be applied to study intelligent buildings. This paper gives a brief description of chaos and complexity theory and presents its current positioning, recent developments in building engineering research and future potential applications to intelligent building studies, which provides a bridge between chaos and complexity theory and intelligent building research.
Resumo:
This book is a collection of articles devoted to the theory of linear operators in Hilbert spaces and its applications. The subjects covered range from the abstract theory of Toeplitz operators to the analysis of very specific differential operators arising in quantum mechanics, electromagnetism, and the theory of elasticity; the stability of numerical methods is also discussed. Many of the articles deal with spectral problems for not necessarily selfadjoint operators. Some of the articles are surveys outlining the current state of the subject and presenting open problems.
Resumo:
In the first half of this memoir we explore the interrelationships between the abstract theory of limit operators (see e.g. the recent monographs of Rabinovich, Roch and Silbermann (2004) and Lindner (2006)) and the concepts and results of the generalised collectively compact operator theory introduced by Chandler-Wilde and Zhang (2002). We build up to results obtained by applying this generalised collectively compact operator theory to the set of limit operators of an operator (its operator spectrum). In the second half of this memoir we study bounded linear operators on the generalised sequence space , where and is some complex Banach space. We make what seems to be a more complete study than hitherto of the connections between Fredholmness, invertibility, invertibility at infinity, and invertibility or injectivity of the set of limit operators, with some emphasis on the case when the operator is a locally compact perturbation of the identity. Especially, we obtain stronger results than previously known for the subtle limiting cases of and . Our tools in this study are the results from the first half of the memoir and an exploitation of the partial duality between and and its implications for bounded linear operators which are also continuous with respect to the weaker topology (the strict topology) introduced in the first half of the memoir. Results in this second half of the memoir include a new proof that injectivity of all limit operators (the classic Favard condition) implies invertibility for a general class of almost periodic operators, and characterisations of invertibility at infinity and Fredholmness for operators in the so-called Wiener algebra. In two final chapters our results are illustrated by and applied to concrete examples. Firstly, we study the spectra and essential spectra of discrete Schrödinger operators (both self-adjoint and non-self-adjoint), including operators with almost periodic and random potentials. In the final chapter we apply our results to integral operators on .
Resumo:
This text contains papers presented at the Institute of Mathematics and its Applications Conference on Control Theory, held at the University of Strathclyde in Glasgow. The contributions cover a wide range of topics of current interest to theoreticians and practitioners including algebraic systems theory, nonlinear control systems, adaptive control, robustness issues, infinite dimensional systems, applications studies and connections to mathematical aspects of information theory and data-fusion.