993 resultados para Materials handling
Resumo:
Electroactivematerials can be taken to advantage for the development of sensors and actuators as well as for novel tissue engineering strategies. Composites based on poly(vinylidenefluoride),PVDF,have been evaluated with respect to their biological response. Cell viability and proliferation were performed in vitro both with Mesenchymal Stem Cells differentiated to osteoblasts and Human Fibroblast Foreskin 1. In vivo tests were also performed using 6-week-old C57Bl/6 mice. It was concluded that zeolite and clay composites are biocompatible materials promoting cell response and not showing in vivo pro-inflammatory effects which renders both of them attractive for biological applications and tissue engineering, opening interesting perspectives to development of scaffolds from these composites. Ferrite and silver nanoparticle composites decrease osteoblast cell viability and carbon nanotubes decrease fibroblast viability. Further, carbon nanotube composites result in a significant increase in local vascularization accompanied an increase of inflammatory markers after implantation.
Resumo:
Polymers have become the reference material for high reliability and performance applications. In this work, a multi-scale approach is proposed to investigate the mechanical properties of polymeric based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, a coupling of a Finite Element Method (FEM) and Molecular Dynamics (MD) modeling in an iterative procedure was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, the previous described multi-scale method computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multi-scale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.
Resumo:
Polymeric materials have become the reference material for high reliability and performance applications. However, their performance in service conditions is difficult to predict, due in large part to their inherent complex morphology, which leads to non-linear and anisotropic behavior, highly dependent on the thermomechanical environment under which it is processed. In this work, a multiscale approach is proposed to investigate the mechanical properties of polymeric-based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, the coupling of a finite element method (FEM) and molecular dynamics (MD) modeling, in an iterative procedure, was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, this multiscale approach computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multiscale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.
Resumo:
Ambient Assisted Living is an important subject to be explored and developed, especially in developed countries, due to the increasing number of aged people. In this context the development of mechatronic support systems for bedridden elderly people (BEP) living in their homes is essential in order to support independence, autonomy and improve their quality of life. Some basic tasks as eating, taking a bath and/or hygiene cares become difficult to execute, regarding that often the main caregiver is the other element of the aged couple (husband or wife). This paper presents the conceptual design of a mechanical system especially devoted to assist the caregiver in the handling and repositioning of the BEP. Issues as reducing the number of caregivers, to only one, and reducing the system's handling complexity (because most of the time it will be used by an aged person) are considered. The expertise obtained from the visits to rehabilitation centers and hospitals, and from working meetings, are considered in the development of the proposed mechatronic system.
Resumo:
Mesoporous carbon materials were prepared through template method approach using porous clay heterostructures (PCHs) as matrix and furfuryl alcohol as carbon precursor. Three PCHs prepared using amines with 8, 10 and 12 carbon atoms were used. The effect of several impregnation-polymerization cycles of the carbon precursor, the carbonization temperature and the need of a previous surface alumination were evaluated. The presence of two porosity domains was identified in all the carbon materials. These two domains comprise pores resulting from the carbonization of the polymer film formed in the inner structure of the PCH (domain I) and larger pores created by the clay particles aggregation (domain II). The predominance of the porosity associated to domain I or II can be achieved by choosing a specific amine to prepare the PCH matrix. Carbonization at 700 C led to the highest development of pores of domain I. In general, the second impregnation-polymerization cycle of furfuryl alcohol resulted in a small decrease of both types of porosity domains. Furthermore the previous acidification of the surface to create acidic sites proved to be unnecessary. The results showed the potential of PCHs as matrices to tailor the textural properties of carbons prepared by template mediated synthesis.
Resumo:
Este trabalho foi desenvolvido no âmbito de um projecto europeu, BIOPRODUCTION, tendo em vista o desenvolvimento de dois tipos de biomaterias funcionais: ésteres de açúcares com ácidos gordos (SFAE) e metacrilatos funcionais. A síntese laboratorial do biosurfactante SFAE foi efectuada utilizando como matérias-primas diferentes sacáridos, nomeadamente sacarose, glucose e melaço de cana-de-açúcar (mistura de polissacáridos), e ésteres metílicos de ácidos gordos (FAME) de óleos vegetais, tais como colza e coco. Esta síntese é constituída por dois passos: acilação dos açúcares com anidrido acético, e transesterificação do açúcar acilado com FAME, utilizando triflatos de lantanídeos como catalisador. Diferentes estequiometrias foram testadas, bem como diferentes processos de modo a evitar a degradação dos açúcares. Foram efectuados testes preliminares de emulsão e calculou-se, empiricamente, o respectivo HLB. Procedeu-se à caracterização do produto através de FTIR e RMN e também à optimização iterativa do processo de síntese. A modificação, à escala laboratorial, de metacrilatos de metilo (MMA) realizou-se recorrendo à sua transesterificação com polióis convencionais. Efectuaram-se testes de reticulação do produto com diferentes catalisadores e iniciadores para posterior aplicação em revestimentos de borracha. Por fim, para ambos os produtos serão necessários estudos adicionais de caracterização, nomeadamente tensão superficial para os biosurfactantes e propriedades mecânicas para polímeros modificados com MMA.
Resumo:
The production of MVOC by fungi has been taken into account especially from the viewpoint of indoor pollution with microorganisms but the relevance of fungal metabolites in working environments has not been sufficiently studied. The purpose of this study was to assess exposure to MVOCs in a waste-handling unit. It was used Multirae equipment (RAE Systems) to measured MVOCs concentration with a 10.6 eV lamps. The measurements were done near workers nose and during the normal activities. All measurements were done continuously and had the duration of 5 minutes at least. It was consider the higher value obtained in each measurement. In addition, for knowing fungi contamination, five air samples of 50 litres were collected through impaction method at 140 L/minute, at one meter tall, on to malt extract agar with the antibiotic chloramphenicol (MEA). MVOCs results range between 4.7 ppm and 8.9 ppm in the 6 locations consider. These results are eight times higher than normally obtained in indoor settings. Considering fungi results, two species were identified in air, being the genera Penicillium found in all the samples in uncountable colonies and Rhizopus only in one sample (40 UFC/m3). These fungi are known as MVOCs producers, namely terpenoids, ketones, alcohols and others. Until now, there has been no evidence that MVOCs are toxicologically relevant, but further epidemiological research is necessary to elucidate their role on human’s health, particularly in occupational settings where microbiological contamination is common. Additionally, further research should concentrate on quantitative analyses of specific MVOCs.
Resumo:
The present work concerns a new synthesis approach to prepare niobium based SAPO materials with AEL structure and the characterization ofNb species incorporated within the inorganic matrixes. The SAPO-11 materials were synthesized with or without the help of a small amine, methylamine (MA) as co-template, while Nb was added directly during the preparation of the initial gel. Structural, textural and acidic properties of the different supports were evaluated by XRD, TPR, UV-Vis spectroscopy, pyridine adsorption followed by IR spectroscopy and thermal analyses. Pure and well crystalline Nb based SAPO-11 materials were obtained, either with or without MA, using in the initial gel a low Si content of about 0.6. Increasing the Si content of the gel up to 0.9 led to an important decrease of the samples crystallinity. Niobium was found to incorporate the AEL pores support as small Nb2O5 oxide particles and also as extra framework cationic species (Nb5+), compensating the negative charges from the matrix and generating new Lewis acid sites. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
A copper(II) chiral aza-bis(oxazoline) homogeneous catalyst (CuazaBox) was anchored onto the external surface of MCM-22 and ITQ-2 structures, as well as encapsulated into hierarchical MCM-22. The transition metal complex loading onto the porous solids was determined by ICP-AES and the materials were also characterized by elemental analysis (C, N, H, S), FTIR, XPS, TG and low temperature N-2 adsorption isotherms. The materials were tested as heterogeneous catalysts in the benchmark reaction of cyclopropanation of styrene to check the effect of the immobilization procedure on the catalytic parameters, as well as on their reutilization in several catalytic cycles. Catalyst CuazaBox anchored onto the external surface of MCM-22 and ITQ-2 materials were more active and enantioselective in the cyclopropanation of styrene than the corresponding homogeneous phase reaction run under similar experimental conditions. This is due to the propylation of the acidic aza-Box nitrogen. HMCM-22 was nevertheless the best heterogeneous catalyst. Encapsulation of CuazaBox on post-synthesis modified MCM-22 materials led to low activities and enantioselectivities. But reversal on the stereochemical course of the reaction was observed, probably due to confinement effect. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil
Resumo:
Actualmente, os smartphones e outros dispositivos móveis têm vindo a ser dotados com cada vez maior poder computacional, sendo capazes de executar um vasto conjunto de aplicações desde simples programas de para tirar notas até sofisticados programas de navegação. Porém, mesmo com a evolução do seu hardware, os actuais dispositivos móveis ainda não possuem as mesmas capacidades que os computadores de mesa ou portáteis. Uma possível solução para este problema é distribuir a aplicação, executando partes dela no dispositivo local e o resto em outros dispositivos ligados à rede. Adicionalmente, alguns tipos de aplicações como aplicações multimédia, jogos electrónicos ou aplicações de ambiente imersivos possuem requisitos em termos de Qualidade de Serviço, particularmente de tempo real. Ao longo desta tese é proposto um sistema de execução de código remota para sistemas distribuídos com restrições de tempo-real. A arquitectura proposta adapta-se a sistemas que necessitem de executar periodicamente e em paralelo mesmo conjunto de funções com garantias de tempo real, mesmo desconhecendo os tempos de execução das referidas funções. A plataforma proposta foi desenvolvida para sistemas móveis capazes de executar o Sistema Operativo Android.
Resumo:
Several antineoplastic drugs have been classified as carcinogens by the International Agency for Research on Cancer (IARC) on the basis of epidemiological findings, animal carcinogenicity data, and outcomes of in vitro genotoxicity studies. 5-Fluorouracil (5-FU), which is easily absorbed through the skin, is the most frequently used antineoplastic agent in Portuguese hospitals and therefore may be used as an indicator of surface contamination. The aims of the present investigation were to (1) examine surface contamination by 5-FU and (2) assess the genotoxic risk using cytokinesis-block micronucleus assay in nurses from two Portuguese hospitals. The study consisted of 2 groups: 27 nurses occupationally exposed to cytostatic agents (cases) and 111 unexposed individuals (controls). Peripheral blood lymphocytes (PBL) were collected in order to measure micronuclei (MN) in both groups. Hospital B showed a higher numerical level of contamination but not significantly different from Hospital A. However; Hospital A presented the highest value of contamination and also a higher proportion of contaminated samples. The mean frequency of MN was significantly higher in exposed workers compared with controls. No significant differences were found among MN levels between the two hospitals. The analysis of confounding factors showed that age is a significant variable in MN frequency occurrence. Data suggest that there is a potential genotoxic damage related to occupational exposure to cytostatic drugs in oncology nurses.
Resumo:
A biomimetic sensor for norfloxacin is presented that is based on host-guest interactions and potentiometric transduction. The artificial host was imprinted into polymers made from methacrylic acid and/or 2-vinyl pyridine. The resulting particles were entrapped in a plasticized poly(vinyl chloride) (PVC) matrix. The sensors exhibit near-Nernstian response in steady state evaluations, and detection limits range from 0.40 to 1.0 μgmL−1, respectively, and are independent of pH values at between 2 and 6, and 8 and 11, respectively. Good selectivity was observed over several potential interferents. In flowing media, the sensors exhibit fast response, a sensitivity of 68.2 mV per decade, a linear range from 79 μM to 2.5 mM, a detection limit of 20 μgmL−1, and a stable baseline. The sensors were successfully applied to field monitoring of norfloxacin in fish samples, biological samples, and pharmaceutical products