931 resultados para Matabolism of Nueleic Acids Activities of Hydroiytic Enzymes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Un papier bioactif est obtenu par la modification d’un papier en y immobilisant une ou plusieurs biomolécules. La recherche et le développement de papiers bioactifs est en plein essor car le papier est un substrat peu dispendieux qui est déjà d’usage très répandu à travers le monde. Bien que les papiers bioactifs n’aient pas connus de succès commercial depuis la mise en marche de bandelettes mesurant le taux de glucose dans les années cinquante, de nombreux groupes de recherche travaillent à immobiliser des biomolécules sur le papier pour obtenir un papier bioactif qui est abordable et possède une bonne durée de vie. Contrairement à la glucose oxidase, l’enzyme utilisée sur ces bandelettes, la majorité des biomolécules sont très fragiles et perdent leur activité très rapidement lorsqu’immobilisées sur des papiers. Le développement de nouveaux papiers bioactifs pouvant détecter des substances d’intérêt ou même désactiver des pathogènes dépend donc de découverte de nouvelles techniques d’immobilisation des biomolécules permettant de maintenir leur activité tout en étant applicable dans la chaîne de production actuelle des papiers fins. Le but de cette thèse est de développer une technique d’immobilisation efficace et versatile, permettant de protéger l’activité de biomolécules incorporées sur des papiers. La microencapsulation a été choisie comme technique d’immobilisation car elle permet d’enfermer de grandes quantités de biomolécules à l’intérieur d’une sphère poreuse permettant leur protection. Pour cette étude, le polymère poly(éthylènediimine) a été choisi afin de générer la paroi des microcapsules. Les enzymes laccase et glucose oxidase, dont les propriétés sont bien établies, seront utilisées comme biomolécules test. Dans un premier temps, deux procédures d’encapsulation ont été développées puis étudiées. La méthode par émulsion produit des microcapsules de plus petits diamètres que la méthode par encapsulation utilisant un encapsulateur, bien que cette dernière offre une meilleure efficacité d’encapsulation. Par la suite, l’effet de la procédure d’encapsulation sur l’activité enzymatique et la stabilité thermique des enzymes a été étudié à cause de l’importance du maintien de l’activité sur le développement d’une plateforme d’immobilisation. L’effet de la nature du polymère utilisé pour la fabrication des capsules sur la conformation de l’enzyme a été étudié pour la première fois. Finalement, l’applicabilité des microcapsules de poly(éthylèneimine) dans la confection de papiers bioactifs a été démontré par le biais de trois prototypes. Un papier réagissant au glucose a été obtenu en immobilisant des microcapsules contenant l’enzyme glucose oxidase. Un papier sensible à l’enzyme neuraminidase pour la détection de la vaginose bactérienne avec une plus grande stabilité durant l’entreposage a été fait en encapsulant les réactifs colorimétriques dans des capsules de poly(éthylèneimine). L’utilisation de microcapsules pour l’immobilisation d’anticorps a également été étudiée. Les avancées au niveau de la plateforme d’immobilisation de biomolécules par microencapsulation qui ont été réalisées lors de cette thèse permettront de mieux comprendre l’effet des réactifs impliqués dans la procédure de microencapsulation sur la stabilité, l’activité et la conformation des biomolécules. Les résultats obtenus démontrent que la plateforme d’immobilisation développée peut être appliquée pour la confection de nouveaux papiers bioactifs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work was focused to study the immobilization of enzymes on polymers. A large range of polymer matrices have been employed as supports for enzyme immobilization. Here polyaniline (PAN!) and poly(0~toluidine) (POT) were used as supports. PANI and POT provides an excellent support for enzyme immobilization by virtue of its facile synthesis, superior chemical and physical stabilities, and large retention capacity. We selected industrially important starch hydrolyzing enzymes a-amylase and glucoamylase for the study. In this work the selected enzymes were immobilized via adsorption and covalent bonding methods.To optimize the catalytic efficiency and stability of the resulting biocatalysts, the attempt was made to understand the immobilization effects on enzymatic properties. The effect of pH of the immobilization medium, time of immobilization on the immobilization efficiency was observed. The starch hydrolyzing activity of free 0:-amylase and glucoamylase were compared with immobilized forms. Immobilization on solid supports changes the microenvironment of the enzyme there by influences the pH and temperature relationship on the enzymatic activity. Hence these parameters also optimized. The reusability and storage stability of immobilized enzymes an important aspect from an application standpoint, especially in industrial applications. Taking in to consideration of this, the reusability and the long tenn storage stability of the immobilized enzyme investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies reveal the presence of enzymes and different proteins in the venom of S.argus. The present study detected the presence of phosphodiesterase in S. argus venom. S. argus venom has displayed the presence of micromolar concentration of acetylcholine. Phospholipase activity in S. argus venom shows values below the detection threshold indicating that the venom does not possess this enzyme. The proteolylic activity of S. argus venom on casein and gelatin were assayed due to the probable involvement of proteases in causing the instability of biological activities of the fish venom. Caseinase and gelatinase enzymes were detected in S. argus venom. Though exact relationships of these enzymes and proteins in envenomation are not traced, the involvement of enzymes in envenomation cannot be ruled out. Further studies are required to find the mechanism of action of these enzymes and proteins present in S. argus venom. The present study opens new dimensions for isolation of the lethal compound present in S. argus venom. The preliminary study carried out here shows the presence of a lethal factor between 6.5 KDa - 68 KDa. Studies conclude that fish venom possesses many bioactive substances, especially peptides, proteases and enzymes that bind with high affinity to physiological targets and can be trapped for therapeutic purposes in the near future. Even though this study reveals the conundrums of S. argus venom, it opens new vistas of research on the venom components and the application and design of the venom as a drug.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methylparathion (MP) is an organophosphorus insecticide used world wide in agriculture due to its high activity against a broad spectrum of insect pests. The aim of the study is to understand the effect of methylparathion on the lipid peroxidation, detoxifying and antioxidant enzymes namely catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione Stransferase (GST), total reduced glutathione (GSH), lipid peroxidation (LPO), acetylcholinesterase (AChE) and disease diagnostic marker enzymes in liver, sarcoplasmic (SP) and myofirbirllar (MF) proteins in muscles, lipids and histopathlogical changes in various organs of Labeo rohita of size 75 i 6g at lethal and sublethal level of exposure. The probit analysis showed that the lethal concentration (LC 50%) for 24, 48, 72 and 96h were 15.5mg/L, 12.3mg/L, 11.4mg/L and 10.2mg/L respectively which is much higher compared to the LC50 for juvenile fish. The LPO level and GST activity increased five folds and two folds respectively on exposure to methylparathion at 10.2 mg/L and the level of the enzymes increased, on sub lethal exposure beyond 0.25mg/L. AChE activity was inhibited by 74% at a concentration of 1.8mg/L and 90% at 5.4mg/L. The disease diagnostic marker enzymes AST, ALT, ALP and LDH increased by about 2, 3 ,3 and 2 folds respectively at pesticide concentration of 10.2mg/L when compared to control. On sub lethal exposure, however the enzymes did not show any significant changes up to 0.5mg/L. At a concentration of 10.2 mg/L, there was a three fold increase in myofibrillar proteins while the increase in sarcoplasmic protein was above 1.5 fold. On sub lethal exposure, significant alteration was noticed up to 30 days up to 1mg/L of methylparathion concentration. Further exposure up to 45 days increased sarcoplasmic proteins (upto 0.5mg/L). ln the case of myofibrillar proteins, noticeable changes were observed at 1mg/L concentration right from 15th day. The cholesterol content in brain tissues increased by about 27% at methylparathion concentration of 5.4 mglL. However at 0.25mg/L sub lethal concentration, no significant alteration was observed in enzyme activity, muscle proteins, lipids and histopathology of the tissues. The results suggest that methylparathion has the potential to induce oxidative stress in fish, and that liver, muscle and brains are more sensitive organs of Labeo rohita, with poor antioxidant potentials at higher concentrations of the pesticide. The various parameters studied in this investigation can also be used as biomarkers of methylparathion exposure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Culturing of fish in captivity demands a detailed knowledge on well balanced diet and adequate feeding. Formulation and production of nutritionally balanced diets for fish require research, quality control and biological evaluation. It is often assuemed that what is ingested is also digested, but this is not always be the case. Digestion depends upon both the physical state of the food and the kind and quantity of enzymes in the digestive tract. The ability of fish to digest a particular component of diet can be ascertained by investigating the complement of digestive enzymes present along the digestive tract. Investigations on the basic digestive physiology will not only enhance our present knowledge on nutrition and feed development, but will also contribute in understanding the digestive functions of lower vertebrates. It is against this background that the present topic of investigation "Studies on the digestive enzymes of the cultivable grey mullet Liza parsia Hamilton Buchanan, l822" has been selected. The thesis is arranged and presented in eight chapters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poisoning by pesticides from agricultural fields is a serious water pollution problem and its environmental long-term effect may result in the incidence of poisoning of fish and other aquatic life forms (jyothi and Narayan, 1999). Fishes like Heteropneustesfbssilis and C/arius batrac/nus are especially prone to serious pesticide pollution as their habitat is mostly the agriculture area. Though only few studies are conducted in this area, it can be assessed from the local information that, population of such fish is on the verge of vulnerability due to extensive use of pesticides. The knowledge of sublethal effects of xenobiotic compounds on hematological parameters, enzyme activities and metabolite concentrations is very important to delineate the fish health status and provide a future understanding of ecological impacts. These pesticides act by causing inhibition of cholinesterase enzymes (ChE) by formation of enzyme inhibitor complex (O'Brien, 1976) and damaging the nervous system. These effects may result in metabolic disorders. Associated to cholinesterase activities, a study of other enzymes such as phosphatases and aminotransferases close to intermediary metabolite determination provides a wider view of metabolism. Interest in toxicological aspects has grown in recent years and research is now increasingly focused on mechanistic aspects of oxidative damage and cellular responses in biological system. The term ‘biomarker’ is generally used in a broad sense to include almost any measurement reflecting an interaction between a biological system and a potential hazard, which may be chemical, physical or biological (WHO, 1993). As biomarker stands for immediate responses, they are used as early warning signals of biological effects caused by environmental pollutants. The present work attempts to assess the toxicity of organophosphorus insecticide monocrotophos on the experimental organism selected for this study namely stinging catfish (Heteropneustesfossi/is) (Bloch), and to probe into the stress responses of the organism

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetes mellitus is a heterogeneous metabolic disorder characterized by hyperglycemia with disturbances in carbohydrate, protein and lipid metabolism resulting from defects in insulin secretion, insulin action or both. Currently there are 387 million people with diabetes worldwide and is expected to affect 592 million people by 2035. Insulin resistance in peripheral tissues and pancreatic beta cell dysfunction are the major challenges in the pathophysiology of diabetes. Diabetic secondary complications (like liver cirrhosis, retinopathy, microvascular and macrovascular complications) arise from persistent hyperglycemia and dyslipidemia can be disabling or even life threatening. Current medications are effective for control and management of hyperglycemia but undesirable effects, inefficiency against secondary complications and high cost are still serious issues in the present prognosis of this disorder. Hence the search for more effective and safer therapeutic agents of natural origin has been found to be highly demanding and attract attention in the present drug discovery research. The data available from Ayurveda on various medicinal plants for treatment of diabetes can efficiently yield potential new lead as antidiabetic agents. For wider acceptability and popularity of herbal remedies available in Ayurveda scientific validation by the elucidation of mechanism of action is very much essential. Modern biological techniques are available now to elucidate the biochemical basis of the effectiveness of these medicinal plants. Keeping this idea the research programme under this thesis has been planned to evaluate the molecular mechanism responsible for the antidiabetic property of Symplocos cochinchinensis, the main ingredient of Nishakathakadi Kashayam, a wellknown Ayurvedic antidiabetic preparation. A general introduction of diabetes, its pathophysiology, secondary complications and current treatment options, innovative solutions based on phytomedicine etc has been described in Chapter 1. The effect of Symplocos cochinchinensis (SC), on various in vitro biochemical targets relevant to diabetes is depicted in Chapter 2 including the preparation of plant extract. Since diabetes is a multifactorial disease, ethanolic extract of the bark of SC (SCE) and its fractions (hexane, dichloromethane, ethyl acetate and 90 % ethanol) were evaluated by in vitro methods against multiple targets such as control of postprandial hyperglycemia, insulin resistance, oxidative stress, pancreatic beta cell proliferation, inhibition of protein glycation, protein tyrosine phosphatase-1B (PTP-1B) and dipeptidyl peptidase-IV (DPPxxi IV). Among the extracts, SCE exhibited comparatively better activity like alpha glucosidase inhibition, insulin dependent glucose uptake (3 fold increase) in L6 myotubes, pancreatic beta cell regeneration in RIN-m5F and reduced triglyceride accumulation in 3T3-L1 cells, protection from hyperglycemia induced generation of reactive oxygen species in HepG2 cells with moderate antiglycation and PTP-1B inhibition. Chemical characterization by HPLC revealed the superiority of SCE over other extracts due to presence of bioactives (beta-sitosterol, phloretin 2’glucoside, oleanolic acid) in addition to minerals like magnesium, calcium, potassium, sodium, zinc and manganese. So SCE has been subjected to oral sucrose tolerance test (OGTT) to evaluate its antihyperglycemic property in mild diabetic and diabetic animal models. SCE showed significant antihyperglycemic activity in in vivo diabetic models. Chapter 3 highlights the beneficial effects of hydroethanol extract of Symplocos cochinchinensis (SCE) against hyperglycemia associated secondary complications in streptozotocin (60 mg/kg body weight) induced diabetic rat model. Proper sanction had been obtained for all the animal experiments from CSIR-CDRI institutional animal ethics committee. The experimental groups consist of normal control (NC), N + SCE 500 mg/kg bwd, diabetic control (DC), D + metformin 100 mg/kg bwd, D + SCE 250 and D + SCE 500. SCEs and metformin were administered daily for 21 days and sacrificed on day 22. Oral glucose tolerance test, plasma insulin, % HbA1c, urea, creatinine, aspartate aminotransferase (AST), alanine aminotransferase (ALT), albumin, total protein etc. were analysed. Aldose reductase (AR) activity in the eye lens was also checked. On day 21, DC rats showed significantly abnormal glucose response, HOMA-IR, % HbA1c, decreased activity of antioxidant enzymes and GSH, elevated AR activity, hepatic and renal oxidative stress markers compared to NC. DC rats also exhibited increased level of plasma urea and creatinine. Treatment with SCE protected from the deleterious alterations of biochemical parameters in a dose dependent manner including histopathological alterations in pancreas. SCE 500 exhibited significant glucose lowering effect and decreased HOMA-IR, % HbA1c, lens AR activity, and hepatic, renal oxidative stress and function markers compared to DC group. Considerable amount of liver and muscle glycogen was replenished by SCE treatment in diabetic animals. Although metformin showed better effect, the activity of SCE was very much comparable with this drug. xxii The possible molecular mechanism behind the protective property of S. cochinchinensis against the insulin resistance in peripheral tissue as well as dyslipidemia in in vivo high fructose saturated fat diet model is described in Chapter 4. Initially animal were fed a high fructose saturated fat (HFS) diet for a period of 8 weeks to develop insulin resistance and dyslipidemia. The normal diet control (ND), ND + SCE 500 mg/kg bwd, high fructose saturated fat diet control (HFS), HFS + metformin 100 mg/kg bwd, HFS + SCE 250 and HFS + SCE 500 were the experimental groups. SCEs and metformin were administered daily for the next 3 weeks and sacrificed at the end of 11th week. At the end of week 11, HFS rats showed significantly abnormal glucose and insulin tolerance, HOMA-IR, % HbA1c, adiponectin, lipid profile, liver glycolytic and gluconeogenic enzyme activities, liver and muscle triglyceride accumulation compared to ND. HFS rats also exhibited increased level of plasma inflammatory cytokines, upregulated mRNA level of gluconeogenic and lipogenic genes in liver. HFS exhibited the increased expression of GLUT-2 in liver and decreased expression of GLUT-4 in muscle and adipose. SCE treatment also preserved the architecture of pancreas, liver, and kidney tissues. Treatment with SCE reversed the alterations of biochemical parameters, improved insulin sensitivity by modifying gene expression in liver, muscle and adipose tissues. Overall results suggest that SC mediates the antidiabetic activity mainly via alpha glucosidase inhibition, improved insulin sensitivity, with antiglycation and antioxidant activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study quantifies the influence of Poa alpina on the soil microbial community in primary succession of alpine ecosystems, and whether these effects are controlled by the successional stage. Four successional sites representative of four stages of grassland development (initial, 4 years (non-vegetated); pioneer, 20 years; transition, 75 years; mature, 9500 years old) on the Rotmoos glacier foreland, Austria, were sampled. The size, composition and activity of the microbial community in the rhizosphere and bulk soil were characterized using the chloroform-fumigation extraction procedure, phospholipid fatty acid (PLFA) analysis and measurements of the enzymes beta-glucosidase, beta-xylosidase, N-acetyl-beta-glucosaminidase, leucine aminopeptidase, acid phosphatase and sulfatase. The interplay between the host plant and the successional stage was quantified using principal component (PCA) and multidimensional scaling analyses. Correlation analyses were applied to evaluate the relationship between soil factors (C-org, N-t, C/N ratio, pH, ammonium, phosphorus, potassium) and microbial properties in the bulk soil. In the pioneer stage microbial colonization of the rhizosphere of P. alpina was dependent on the reservoir of microbial species in the bulk soil. As a consequence, the rhizosphere and bulk soil were similar in microbial biomass (ninhydrin-reactive nitrogen (NHR-N)), community composition (PLFA), and enzyme activity. In the transition and mature grassland stage, more benign soil conditions stimulated microbial growth (NHR-N, total amount of PLFA, bacterial PLFA, Gram-positive bacteria, Gram-negative bacteria), and microbial diversity (Shannon index H) in the rhizosphere either directly or indirectly through enhanced carbon allocation. In the same period, the rhizosphere microflora shifted from a G(-) to a more G(+), and from a fungal to a more bacteria-dominated community. Rhizosphere beta-xylosidase, N-acetyl-beta-glucosaminidase, and sulfatase activity peaked in the mature grassland soil, whereas rhizosphere leucine aminopeptidase, beta-glucosidase, and phosphatase activity were highest in the transition stage, probably because of enhanced carbon and nutrient allocation into the rhizosphere due to better growth conditions. Soil organic matter appeared to be the most important driver of microbial colonization in the bulk soil. The decrease in soil pH and soil C/N ratio mediated the shifts in the soil microbial community composition (bacPLFA, bacPLFA/fungPLFA, G(-), G(+)/G(-)). The activities of beta-glucosidase, beta-xylosidase and phosphatase were related to soil ammonium and phosphorus, indicating that higher decomposition rates enhanced the nutrient availability in the bulk soil. We conclude that the major determinants of the microllora vary along the successional gradient: in the pioneer stage the rhizosphere microflora was primarily determined by the harsh soil environment; under more favourable environmental conditions, however, the host plant selected for a specific microbial community that was related to the dynamic interplay between soil properties and carbon supply. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study quantifies the influence of Poa alpina on the soil microbial community in primary succession of alpine ecosystems, and whether these effects are controlled by the successional stage. Four successional sites representative of four stages of grassland development (initial, 4 years (non-vegetated); pioneer, 20 years; transition, 75 years; mature, 9500 years old) on the Rotmoos glacier foreland, Austria, were sampled. The size, composition and activity of the microbial community in the rhizosphere and bulk soil were characterized using the chloroform-fumigation extraction procedure, phospholipid fatty acid (PLFA) analysis and measurements of the enzymes beta-glucosidase, beta-xylosidase, N-acetyl-beta-glucosaminidase, leucine aminopeptidase, acid phosphatase and sulfatase. The interplay between the host plant and the successional stage was quantified using principal component (PCA) and multidimensional scaling analyses. Correlation analyses were applied to evaluate the relationship between soil factors (C-org, N-t, C/N ratio, pH, ammonium, phosphorus, potassium) and microbial properties in the bulk soil. In the pioneer stage microbial colonization of the rhizosphere of P. alpina was dependent on the reservoir of microbial species in the bulk soil. As a consequence, the rhizosphere and bulk soil were similar in microbial biomass (ninhydrin-reactive nitrogen (NHR-N)), community composition (PLFA), and enzyme activity. In the transition and mature grassland stage, more benign soil conditions stimulated microbial growth (NHR-N, total amount of PLFA, bacterial PLFA, Gram-positive bacteria, Gram-negative bacteria), and microbial diversity (Shannon index H) in the rhizosphere either directly or indirectly through enhanced carbon allocation. In the same period, the rhizosphere microflora shifted from a G(-) to a more G(+), and from a fungal to a more bacteria-dominated community. Rhizosphere beta-xylosidase, N-acetyl-beta-glucosaminidase, and sulfatase activity peaked in the mature grassland soil, whereas rhizosphere leucine aminopeptidase, beta-glucosidase, and phosphatase activity were highest in the transition stage, probably because of enhanced carbon and nutrient allocation into the rhizosphere due to better growth conditions. Soil organic matter appeared to be the most important driver of microbial colonization in the bulk soil. The decrease in soil pH and soil C/N ratio mediated the shifts in the soil microbial community composition (bacPLFA, bacPLFA/fungPLFA, G(-), G(+)/G(-)). The activities of beta-glucosidase, beta-xylosidase and phosphatase were related to soil ammonium and phosphorus, indicating that higher decomposition rates enhanced the nutrient availability in the bulk soil. We conclude that the major determinants of the microllora vary along the successional gradient: in the pioneer stage the rhizosphere microflora was primarily determined by the harsh soil environment; under more favourable environmental conditions, however, the host plant selected for a specific microbial community that was related to the dynamic interplay between soil properties and carbon supply. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Postembedding immunoelectron microscopy has been used to investigate the diffusibility of an endo-beta-1,4-glucanase and a xylanase from A. niger in soybean. The results showed more specific localisation of the enzymes into the protein and lipid bodies of soybean cells. This was against our hypothesis that suggested that the enzymes should be localised in the cell wall.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Serine proteases are a major component of viper venoms and are thought to disrupt several distinct elements of the blood coagulation system of envenomed victims. A detailed understanding of the functions of these enzymes is important both for acquiring a fuller understanding of the pathology of envenoming and because these venom proteins have shown potential in treating blood coagulation disorders. Methodology/Principal Findings: In this study a novel, highly abundant serine protease, which we have named rhinocerase, has been isolated and characterised from the venom of Bitis gabonica rhinoceros using liquid phase isoelectric focusing and gel filtration. Like many viper venom serine proteases, this enzyme is glycosylated; the estimated molecular mass of the native enzyme is approximately 36kDa, which reduces to 31kDa after deglycosylation. The partial amino acid sequence shows similarity to other viper venom serine proteases, but is clearly distinct from the sequence of the only other sequenced serine protease from Bitis gabonica. Other viper venom serine proteases have been shown to exert distinct biological effects, and our preliminary functional characterization of rhinocerase suggest it to be multifunctional. It is capable of degrading α and β chains of fibrinogen, dissolving plasma clots and of hydrolysing a kallikrein substrate. Conclusions/Significance: A novel multifunctional viper venom serine protease has been isolated and characterised. The activities of the enzyme are consistent with the known in vivo effects of Bitis gabonica envenoming, including bleeding disorders, clotting disorders and hypotension. This study will form the basis for future research to understand the mechanisms of serine protease action, and examine the potential for rhinocerase to be used clinically to reduce the risk of human haemostatic disorders such as heart attacks and strokes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study describes the enzymatic properties and molecular identification of 5`-nucleotidase in soluble and microsomal fractions from rat cardiac ventricles. Using AMP as a substrate, the results showed that the cation and the concentration required for maximal activity in the two fractions was magnesium at a final concentration of 1 mM. The pH optimum for both fractions was 9.5. The apparent K-m (Michaelis constant) values calculated from the Eadie-Hofstee plot were 59.7 +/- 10.4 mu M and 134.8 +/- 32.1 mu M, with V-max values of 6.7 +/- 0.4 and 143.8 +/- 23.8 nmol P-i/min/mg of protein (means +/- S.D., n = 4) from soluble and microsomal fractions respectively. Western blotting analysis of ecto-5`-nucleotidase revealed a 70 kDa protein in both fractions, with the major proportion present in the microsomal fraction. The presence of these enzymes in the heart probably has a physiological function in adenosine signalling. Furthermore, the presence of ecto-5`-nucleotidase in the microsomal fraction could have a role in the modulation of the excitation-contraction-coupling process through involvement of the Ca2+ influx into the sarcoplasmic reticulum. The measurement of maximal enzyme activities in the two fractions highlights the potential capacity of the different pathways of purine metabolism in the heart.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two aspartyl proteases activities were identified and isolated from Trypanosoma cruzi epimastigotes: cruzipsin-I (CZP-I) and cruzipsin-II (CZP-II). One was isolated from a soluble fraction (CZP-II) and the other was solubilized with 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate(CZP-I). The molecular mass of both proteases was estimated to be 120 kDa by HPLC gel filtration and the activity of the enzymes was detected in a doublet of bands (56 and 48 kDa) by substrate-sodium dodecyl sulphate-polyacrylamide-gelatin gel electrophoresis. Substrate specificity studies indicated that the enzymes consistently hydrolyze the cathepsin D substrate Phe-Ala-Ala-Phe (4-NO(2))-Phe-Val-Leu-O(4)MP but failed to hydrolyze serine and other protease substrates. Both proteases activities were strongly inhibited by the classic inhibitor pepstatin-A (>= 68%) and the aspartic active site labeling agent, 1,2-epoxy-3-(phenyl-nitrophenoxy) propane (>= 80%). These findings show that both proteases are novel T. cruzi acidic proteases. The physiological function of these enzymes in T. cruzi has under investigation. (c) 2009 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent recrudescence of Mycobacterium tuberculosis infection and the emergence of multidrug-resistant strains have created an urgent need for new therapeutics against tuberculosis. The enzymes of the shikimate pathway are attractive drug targets because this route is absent in mammals and, in M. tuberculosis, it is essential for pathogen viability. This pathway leads to the biosynthesis of aromatic compounds, including aromatic amino acids, and it is found in plants, fungi, bacteria, and apicomplexan parasites. The aroB-encoded enzyme dehydroquinate synthase is the second enzyme of this pathway, and it catalyzes the cyclization of 3-deoxy-D-arabino-heptulosonate-7-phosphate in 3-dehydroquinate. Here we describe the PCR amplification and cloning of the aroB gene and the overexpression and purification of its product, dehydroquinate synthase, to homogeneity. In order to probe where the recombinant dehydroquinate synthase was active, genetic complementation studies were performed. The Escherichia coli AB2847 mutant was used to demonstrate that the plasmid construction was able to repair the mutants, allowing them to grow in minimal medium devoid of aromatic compound supplementation. In addition, homogeneous recombinant M. tuberculosis dehydroquinate synthase was active in the absence of other enzymes, showing that it is homomeric. These results will support the structural studies with M. tuberculosis dehydroquinate synthase that are essential for the rational design of antimycobacterial agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)