899 resultados para Marker dyes
Resumo:
The feasibility of using diatomite for the removal of the problematic reactive dyes as well as basic dyes from textile wastewater was investigated. Methylene blue, Cibacron reactive black and reactive yellow dyes were considered. Physical characteristics of diatomite such as pH(solution), pH(ZPC), surface area, Fourier transform infrared, and scanning electron microscopy were investigated. The surface area of diatomite was found to be 27.80 m(2) g(-1) and the pH(ZPC) occurred around pH of 5.4. The results indicated that the surface charge of diatomite decreased as the pH of the solution increased with the maximum methylene blue removal from aqueous solution occurring at basic pH of around (1011). Adsorption isotherms of diatomite with methylene blue, hydrolysed reactive black and yellow dyes were constructed at different pH values, initial dye concentrations and particle sizes. The experimental results were fitted to the Langmuir, Freundlich, and Henry models. The study indicated that electrostatic interactions play an important role in the adsorption of dyes onto diatomite. A model of the adsorption mechanism of methylene blue onto diatomite is proposed. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The effect of dye molecular charges on their adsorption from solution was investigated by using different types of activated carbon adsorbents. Two types of model systems were used representing cationic and anionic dyes. Screening investigations using single point tests were used throughout the study. Cationic dyes, of which Methylene Blue is an example, showed a higher adsorption tendency towards activated carbon over anionic dyes represented by an ate-type reactive compound. Of the number of activated carbons tested, only one of the adsorbents showed an exception to this behavior, and a good relation was observed between Methylene Blue capacity and activated carbon performance. The high capacity of cationic dyes in comparison to anionic dyes was also evident in the results obtained by a preliminary kinetic study carried out on the selected systems. Surface net charge of activated carbon and the nature of attractions between the molecules were suggested to be one of the reasons attributed for this behavior.
Resumo:
The aims of this study were to investigate mechanisms of action involved in H2AX phosphorylation by DNA interstrand crosslinking (ICL) agents and determine whether gamma H2AX could be a suitable pharmacological marker for identifying potential ICL cellular chemosensitivity. In normal human fibroblasts, after treatment with nitrogen mustard (HN2) or cisplatin, the peak gamma H2AX response was detected 2-3 h after the peak of DNA ICLs measured using the comet assay, a validated method for detecting ICLs in vitro or in clinical samples. Detection of gamma H2AX foci by immunofluorescence microscopy could be routinely detected with 6-10 times lower concentrations of both drugs compared to detection of ICLs using the comet assay. A major pathway for repairing DNA ICLs is the initial unhooking of the ICL by the ERCC1-XPF endonuclease followed by homologous recombination. HN2 or cisplatin-induced gamma H2AX foci persisted significantly longer in both, ERCC1 or XRCC3 (homologous recombination) defective Chinese hamster cells that are highly sensitive to cell killing by ICL agents compared to wild type or ionising radiation sensitive XRCC5 cells. An advantage of using gamma H2AX immunofluorescence over the comet assay is that it appears to detect ICL chemosensitivity in both ERCC1 and HR defective cells. With HN2 and cisplatin, gamma H2AX foci also persisted in chemosensitive human ovarian cancer cells (A2780) compared to chemoresistant (A2780cisR) cells. These results show that gamma H2AX can act as a highly sensitive and general marker of DNA damage induced by HN2 or cisplatin and shows promise for predicting potential cellular chemosensitivity to ICL agents. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
JAK2 V617F, identified in the majority of patients with myeloproliferative neoplasms, tyrosine phosphorylates SOCS3 and escapes its inhibition. Here, we demonstrate that the JAK2 exon 12 mutants described in a subset of V617F-negative MPN cases, also stabilize tyrosine phosphorylated SOCS3. SOCS3 tyrosine phosphorylation was also observed in peripheral blood mononuclear cells and granulocytes isolated from patients with JAK2 H538QK539L or JAY2 F537-K539delinsL mutations. JAK kinase inhibitors, which effectively inhibited the proliferation of cells expressing V617F or K539L, also caused a dose-dependent reduction in both mutant JAK2 and SOCS3 tyrosine phosphorylation. We propose, therefore, that SOCS3 tyrosine phosphorylation may be a novel bio-marker of myeloproliferative neoplasms resulting from a JAK2 mutation and a potential reporter of effective JAK2 inhibitor therapy currently in clinical development.
Resumo:
Abstract: Adsorption behaviour of reactive dyes in fixed-bed adsorber was evaluated in this work. The characteristics of mass transfer zone (MTZ), where adsorption in column occurs, were affected by carbon bed depth and influent dye concentration. The working lifetime (t(x)) of MTZ, the height of mass transfer zone (HMTZ), the rate of mass transfer zone (RMTZ), and the column capacity at exhaustion (q(column)) were estimated for the removal of remazol reactive yellow and remazol reactive black by carbon adsorber. The results showed that column capacity calculated at 90% of column exhaustion was lower than carbon capacity obtained from equilibrium studies. This indicated that the capacity of activated carbon was not fully utilized in the fixed-bed adsorber. The bed-depth service time model (BDST) was applied for analysis of reactive yellow adsorption in the column. The adsorption capacity of reactive yellow calculated at 50% breakthrough point (No) was found to be 0.1 kg kg(-1) and this value is equivalent to about 14% of the available carbon capacity. The results of this study indicated the applicability of fixed-bed adsorber for removing remazol reactive yellow from solution. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Attention-deficit hyperactivity disorder (ADHD) is a heritable childhood onset disorder that is marked by variability at multiple levels including clinical presentation, cognitive profile, and response to stimulant medications. It has been suggested that this variability may reflect etiological differences, particularly, at the level of underlying genetics. This study examined whether an attentional phenotype-spatial attentional bias could serve as a marker of symptom severity, genetic risk, and stimulant response in ADHD. A total of 96 children and adolescents with ADHD were assessed on the Landmark Task, which is a sensitive measure of spatial attentional bias. All children were genotyped for polymorphisms (30 untranslated (UTR) and intron 8 variable number of tandem repeats (VNTRs)) of the dopamine transporter gene (DAT1). Spatial attentional bias correlated with ADHD symptom levels and varied according to DAT1 genotype. Children who were homozygous for the 10-repeat allele of the DAT1 30-UTR VNTR displayed a rightward attentional bias and had higher symptom levels compared to those with the low-risk genotype. A total of 26 of these children who were medication naive performed the Landmark Task at baseline and then again after 6 weeks of stimulant medication. Left-sided inattention (rightward bias) at baseline was associated with an enhanced response to stimulants at 6 weeks. Moreover, changes in spatial bias with stimulant medications, varied as a function of DAT1 genotype. This study suggests an attentional phenotype that relates to symptom severity and genetic risk for ADHD, and may have utility in predicting stimulant response in ADHD.
Resumo:
The aim of this research is to compare the adsorption capacity of different types of activated carbons produced by steam activation in small laboratory scale and large industrial scale processes. Equilibrium behaviour of the activated carbons was investigated by performing batch adsorption experiments using bottle-point method. Basic dyes (methylene blue (MB), basic red (BR) and basic yellow (BY)) were used as adsorbates and the maximum adsorptive capacity was determined. Adsorption isotherm models, Langmuir, Freundlich and Redlich-Peterson were used to simulate the equilibrium data at different experimental parameters (pH and adsorbent particle size). It was found that PAC2 (activated carbon produced from New Zealand coal using steam activation) has the highest adsorptive capacity towards MB dye (588 mg/g) followed by F400 (476 mg/g) and PAC 1 (380 mg/g). BR and BY showed higher adsorptive affinity towards PAC2 and F400 than MB. Under comparable conditions, adsorption capacity of basic dyes, MB, BR and BY onto PAC 1, PAC2 and F400 increased in the order: MB <BR <BY. Redlich-Peterson model was found to describe the experimental data over the entire range of concentration under investigation. All the systems show favourable adsorption of the basic dyes with 0 <R-L <I (C) 2007 Elsevier B.V. All rights reserved.