876 resultados para Many-Valued Intellectual System
Resumo:
The Office of Transportation Data, in cooperation with the Federal Highway Administration, prepares this biennial traffic report. This report is used by federal, state, and local governmental agencies in determining highway needs, construction priorities, route location and environmental impact studies, and the application of appropriate design standards. The general public uses this information in determining the amount of traffic that passes a given area as they make their development plans and propose land use changes. The above reflects only a few of the many technical uses for this data.
Resumo:
This is the second annual report on the One UN Programme in Cape Verde, covering the year 2010. The report high-lights joint efforts and achievements of the UN System, the Government and Civil Society within the framework of the One Programme. It includes both programmatic and financial reporting. It gives concrete examples of the development impact of the “Cape Verde Transition Fund” -- both how those funds were used, and how they complemented additional resources available to the UN system (e.g. core funds plus contributions resulting from other resource mobilization efforts). The report shows how UN system activities have supported national priorities as defined in the Cape Verdean Growth and Poverty Reduction Strategy Paper (GPRSP II).
Resumo:
Purpose: Many countries used the PGMI (P=perfect, G=good, M=moderate, I=inadequate) classification system for assessing the quality of mammograms. Limits inherent to the subjectivity of this classification have been shown. Prior to introducing this system in Switzerland, we wanted to better understand the origin of this subjectivity in order to minimize it. Our study aimed at identifying the main determinants of the variability of the PGMI system and which criteria are the most subjected to subjectivity. Methods and Materials: A focus group composed of 2 experienced radiographers and 2 radiologists specified each PGMI criterion. Ten raters (6 radiographers and 4 radiologists) evaluated twice a panel of 40 randomly selected mammograms (20 analogic and 20 digital) according to these specified PGMI criteria. The PGMI classification was assessed and the intra- and inter-rater reliability was tested for each professional group (radiographer vs radiologist), image technology (analogic vs digital) and PGMI criterion. Results: Some 3,200 images were assessed. The intra-rater reliability appears to be weak, particularly in respect to inter-rater variability. Subjectivity appears to be largely independent of the professional group and image technology. Aspects of the PGMI classification criteria most subjected to variability were identified. Conclusion: Post-test discussions enabled to specify more precisely some criteria. This should reduce subjectivity when applying the PGMI classification system. A concomitant, important effort in training radiographers is also necessary.
Resumo:
Résumé : Le virus de la maladie de Carré (en anglais: canine distemper virus, CDV) qui est pathogène pour les chiens et autres carnivores, est très semblable au virus de la rougeole humaine (en anglais MV). Ces deux virus font partie du genre des Morbillivirus qui appartient à la famille des Paramyxoviridae. Ils induisent des complications dans le système nerveux central (SNC). Au stade précoce et aigu de l'infection du SNC, le CDV induit une démyélinisation (1). Ce stade évolue dans certains cas vers une infection chronique avec progression de la démyélinisation. Pendant le stade précoce, qui suit en général de trois semaines les premiers symptômes, le processus de démyélinisation est associé à la réplication du virus et n'est pas considéré comme inflammatoire (1). Par contre, au stade chronique, la progression des plaques de démyélinisation semble être plutôt liée à des processus immunogènes caractéristiques (2), retrouvés également dans la sclérose en plaques (SEP) chez les humains. Pour cette raison, le CDV est considéré comme un modèle pour la SEP humaine et aussi pour l'étude des maladies et complications induites par les Morbillivirus en général (3). Dans notre laboratoire, nous avons utilisé la souche A75/17-CDV, qui est considérée comme le modèle des souches neurovirulentes de CDV. Nous avons cherché en premier lieu à établir un système robuste pour infecter des cultures neuronales avec le CDV. Nous avons choisi les cultures primaires de l'hippocampe du nouveau-né de rat (4), que nous avons ensuite infecté avec une version modifiée du A75/17, appelée rgA75/17-V (5). Dans ces cultures, nous avons prouvé que le CDV infecte des neurones et des astrocytes. Malgré une infection qui se diffuse lentement entre les cellules, cette infection cause une mort massive aussi bien des neurones infectés que non infectés. En parallèle, les astrocytes perdent leur morphologie de type étoilé pour un type polygonal. Finalment, nous avons trouvé une augmentation importante de la concentration en glutamate dans le milieu de culture, qui laisse présumer une sécrétion de glutamate par les cultures infectées (6). Nous avons ensuite étudié le mécanisme des effets cytopathiques induits par le CDV. Nous avons d'abord démontré que les glycoprotéines de surface F et H du CDV s'accumulent massivement dans le réticulum endoplasmique (RE). Cette accumulation déclenche un stress du RE, qui est caractérisé par une forte expression du facteur de transcription proapoptotique CHOP/GADD 153 et de le la calreticuline (CRT). La CRT est une protéine chaperonne localisée dans le RE et impliquée dans l'homéostasie du calcium (Ca2+) et dans le repliement des protéines. En transfectant des cellules de Vero avec des plasmides codant pour plusieurs mutants de la glycoprotéine F de CDV, nous avons démontré une corrélation entre l'accumulation des protéines virales dans le RE et l'augmentation de l'expression de CRT, le stress du RE et la perte de l'homéostasie du Ca2+. Nous avons obtenu des résultats semblables avec des cultures de cellules primaires de cerveau de rat. Ces résultats suggèrent que la CRT joue un rôle crucial dans les phénomènes neurodégénératifs pendant l'infection du SNC, notamment par le relazgage du glutamate via le Ca2+. De manière intéressante, nous démontrons également que l'infection de CDV induit une fragmentation atypique de la CRT. Cette fragmentation induit une re-localisation et une exposition sélective de fragments amino-terminaux de la CRT, connus pour êtres fortement immunogènes à la surface des cellules infectées et non infectées. A partir de ce résultat et des résultats précédents, nous proposons le mécanisme suivant: après l'infection par le CDV, la rétention dans le RE des protéines F et H provoque un stress du RE et une perte de l'homéostasie du Ca2+. Ceci induit la libération du glutamate, qui cause une dégénération rapide du SNC (sur plusieurs jours ou semaines) correspondant à la phase aiguë de la maladie chez le chien. En revanche, les fragments amino-terminaux de la CRT libérés à la surface des cellules infectées peuvent avoir un rôle important dans l'établissement d'une démyélinisation d'origine immunogène, typique de la phase chronique de l'infection de CDV. Summary : The dog pathogen canine distemper virus (CDV), closely related to the human pathogen measles virus (MV), belongs to the Morbillivirus genus of the Paramyxoviridae family. Both CDV and NIV induce complications in the central nervous system (CNS). In the acute early stage of the infection in CNS, the CDV infection induces demyelination. This stage is sometimes followed by a late persistent stage of infection with a progression of the demyelinating lesions (1). The acute early stage occurs around three weeks after the infection and demyelinating processes are associated with active virus replication and are not associated to inflammation (1). In contrast during late persistent stage, the demyelination plaque progression seems to be mainly due to an immunopathological process (2), which characteristics are shared in many aspects with the human disease multiple sclerosis (MS). For these reasons, CDV is considered as a model for human multiple sclerosis, as well as for the study of Morbillivirus-mediated pathogenesis (3). In our laboratory, we used the A75/17-CDV strain that is considered to be the prototype of neurovirulent CDV strain. We first sought to establish a well characterized and robust model for CDV infection of a neuronal culture. We chose primary cultures from newborn rat hippocampes (4) that we infected with a modified version of A75/17, called rgA75/17-V (5). In these cultures, we showed that CDV infects both neurons and astrocytes. While the infection spreads only slowly to neighbouring cells, it causes a massive death of neurons, which includes also non-infected neurons. In parallel, astrocytes undergo morphological changes from the stellate type to the polygonal type. The pharmacological blocking of the glutamate receptors revealed an implication of glutamatergic signalling in the virus-mediated cytopathic effect. Finally, we found a drastic increase concentration of glutamate in the culture medium, suggesting that glutamate was released from the cultured cells (6). We further studied the mechanism of the CDV-induced cytopathic effects. We first demonstrated that the CDV surface glycoprotein F and H markedly accumulate in the endoplasmic reticulum (ER). This accumulation triggers an ER stress, which is characterized by increased expression of the proapoptotic transcription factor CHOP/GADD 153 and calreticulin (CRT). CRT is an ER resident chaperon involved in the Ca2+ homeostasis and in the response to misfolded proteins. Transfections of Vero cells with plasmids encoding various CDV glycoprotein mutants reveal a correlation between accumulation of viral proteins in the ER, CRT overexpression, ER stress and alteration of ER Ca2+ homeostasis. Importantly, similar results are also obtained in primary cell cultures from rat brain. These results suggest that CRT plays a crucial role in CNS infection, particularly due to CRT involvement in Ca2+ mediated glutamate releases, and subsequent neurodegenerative disorders. Very intriguingly, we also demonstrated that CDV infection induces an atypical CRT fragmentation, with relocalisation and selective exposure of the highly immunogenic CRT N-terminal fragments at the surface of infected and neighbouring non-infected cells. Altogether our results combined with previous findings suggest the following scenario. After CDV infection, F and H retention alter Ca2+ homeostasis, and induce glutamate release, which in turn causes rapid CNS degeneration (within days or a week) corresponding to the acute phase of the disease in dogs. In contrast, the CRT N-terminal fragments released at the surface of infected cells may rather have an important role in the establishment of the autoimmune demyelination in the late stage of CDV infection.
Resumo:
Epithelial to Mesenchymal Transition (EMT) in cancer is a process that allows cancer cells to detach from neighboring cells, become mobile and metastasize and shares many signaling pathways with development. Several molecular mechanisms which regulate oncogenic properties in neoplastic cells such as proliferation, resistance to apoptosis and angiogenesis through transcription factors or other mediators are also regulators of EMT. These pathways and downstream transcription factors are, in their turn, regulated by ubiquitination and the Ubiquitin-Proteasome System (UPS). Ubiquitination, the covalent link of the small 76-amino acid protein ubiquitin to target proteins, serves as a signal for protein degradation by the proteasome or for other outcomes such as endocytosis, degradation by the lysosome or directing these proteins to specific cellular compartments. This review discusses aspects of the regulation of EMT by ubiquitination and the UPS and underlines its complexity focusing on transcription and transcription factors regulating EMT and are being regulated by ubiquitination.
Resumo:
The relief of the seafloor is an important source of data for many scientists. In this paper we present an optical system to deal with underwater 3D reconstruction. This system is formed by three cameras that take images synchronously in a constant frame rate scheme. We use the images taken by these cameras to compute dense 3D reconstructions. We use Bundle Adjustment to estimate the motion ofthe trinocular rig. Given the path followed by the system, we get a dense map of the observed scene by registering the different dense local reconstructions in a unique and bigger one
Resumo:
A novel two-component system, CbrA-CbrB, was discovered in Pseudomonas aeruginosa; cbrA and cbrB mutants of strain PAO were found to be unable to use several amino acids (such as arginine, histidine and proline), polyamines and agmatine as sole carbon and nitrogen sources. These mutants were also unable to use, or used poorly, many other carbon sources, including mannitol, glucose, pyruvate and citrate. A 7 kb EcoRI fragment carrying the cbrA and cbrB genes was cloned and sequenced. The cbrA and cbrB genes encode a sensor/histidine kinase (Mr 108 379, 983 residues) and a cognate response regulator (Mr 52 254, 478 residues) respectively. The amino-terminal half (490 residues) of CbrA appears to be a sensor membrane domain, as predicted by 12 possible transmembrane helices, whereas the carboxy-terminal part shares homology with the histidine kinases of the NtrB family. The CbrB response regulator shows similarity to the NtrC family members. Complementation and primer extension experiments indicated that cbrA and cbrB are transcribed from separate promoters. In cbrA or cbrB mutants, as well as in the allelic argR9901 and argR9902 mutants, the aot-argR operon was not induced by arginine, indicating an essential role for this two-component system in the expression of the ArgR-dependent catabolic pathways, including the aruCFGDB operon specifying the major aerobic arginine catabolic pathway. The histidine catabolic enzyme histidase was not expressed in cbrAB mutants, even in the presence of histidine. In contrast, proline dehydrogenase, responsible for proline utilization (Pru), was expressed in a cbrB mutant at a level comparable with that of the wild-type strain. When succinate or other C4-dicarboxylates were added to proline medium at 1 mM, the cbrB mutant was restored to a Pru+ phenotype. Such a succinate-dependent Pru+ property was almost abolished by 20 mM ammonia. In conclusion, the CbrA-CbrB system controls the expression of several catabolic pathways and, perhaps together with the NtrB-NtrC system, appears to ensure the intracellular carbon: nitrogen balance in P. aeruginosa.
Resumo:
SUMMARY Under stressful conditions, mutant or post-translationally modified proteins may spontaneously misfold and form toxie species, which may further assemble into a continuum of increasingly large and insoluble toxic oligomers that may further condense into less toxic, compact amyloids in the cell Intracellular accumulation of aggregated proteins is a common denominator of several neurodegenerative diseases. To cope with the cytotoxicity induced by abnormal, aggregated proteins, cells have evolved various defence mechanisms among which, the molecular chaperones Hsp70. Hsp70 (DnaK in E. coii) is an ATPase chaperone involved in many physiological processes in the cell, such as assisting de novo protein folding, dissociating native protein oligomers and serving as pulling motors in the import of polypeptides into organelles. In addition, Hsp70 chaperones can actively solubilize and reactivate stable protein aggregates, such as heat- or mutation-induced aggregates. Hsp70 requires the cooperation of two other co-chaperones: Hsp40 and NEF (Nucleotide exchange factor) to fulfil its unfolding activity. In the first experimental section of this thesis (Chapter II), we studied by biochemical analysis the in vitro interaction between recombinant human aggregated α-synuclein (a-Syn oligomers) mimicking toxic a-Syn oligomers species in PD brains, with a model Hsp70/Hsp40 chaperone system (the E. coii DnaK/DnaJ/GrpE). We found that chaperone-mediated unfolding of two denatured model enzymes were strongly affected by α-Syn oligomers but, remarkably, not by monomers. This in vitro observed dysfunction of the Hsp70 chaperone system resulted from the sequestration of the Hsp40 proteins by the oligomeric α-synuclein species. In the second experimental part (Chapter III), we performed in vitro biochemical analysis of the co-chaperone function of three E. coii Hsp40s proteins (DnaJ, CbpA and DjlA) in the ATP-fuelled DnaK-mediated refolding of a model DnaK chaperone substrate into its native state. Hsp40s activities were compared using dose-response approaches in two types of in vitro assays: refolding of heat-denatured G6PDH and DnaK-mediated ATPase activity. We also observed that the disaggregation efficiency of Hsp70 does not directly correlate with Hsp40 binding affinity. Besides, we found that these E. coii Hsp40s confer substrate specificity to DnaK, CbpA being more effective in the DnaK-mediated disaggregation of large G6PDH aggregates than DnaJ under certain conditions. Sensibilisées par différents stress ou mutations, certaines protéines fonctionnelles de la cellule peuvent spontanément se convertir en formes inactives, mal pliées, enrichies en feuillets bêta, et exposant des surfaces hydrophobes favorisant l'agrégation. Cherchant à se stabiliser, les surfaces hydrophobes peuvent s'associer aux régions hydrophobes d'autres protéines mal pliées, formant des agrégats protéiques stables: les amyloïdes. Le dépôt intracellulaire de protéines agrégées est un dénominateur commun à de nombreuses maladies neurodégénératives. Afin de contrer la cytotoxicité induite par les protéines agrégées, les cellules ont développé plusieurs mécanismes de défense, parmi lesquels, les chaperonnes moléculaires Hsp70. Hsp70 nécessite la collaboration de deux autres co-chaperonnes : Hsp40 et NEF pour accomplir son activité de désagrégation. Hsp70 (DnaK, chez E. coli) est impliquée par ailleurs dans d'autres fonctions physiologiques telles que l'assistanat de protéines néosynthétisées à la sortie du ribosome, ou le transport transmembranaire de polypeptides. Par ailleurs, les chaperonnes Hsp70 peuvent également solubiliser et réactiver des protéines agrégées à la suite d'un stress ou d'une mutation. Dans la première partie expérimentale de cette thèse (Chapter II), nous avons étudié in vitro l'interaction entre les oligomères d'a-synucleine, responsables entre autres, de la maladie de Parkinson, et le système chaperon Hsp70/Hsp40 (système Escherichia coli DnaK/DnaJ/GrpE). Nous avons démontré que contrairement aux monomères, les oligomères d'a-synucleine inhibaient le système chaperon lors du repliement de protéines agrégées. Cette dysfonction du système chaperon résulte de la séquestration des chaperonnes Hsp40 par les oligomères d'a-synucleine. La deuxième partie expérimentale (Chapitre III) est consacrée à une étude in vitro de la fonction co-chaperonne de trois Hsp40 d'is. coli (DnaJ, CbpA, et DjlA) lors de la désagrégation par DnaK d'une protéine pré-agrégée. Leurs activités ont été comparées par le biais d'une approche dose-réponse au niveau de deux analyses enzymatiques: le repliement de la protéine agrégée et l'activité ATPase de DnaK. Par ailleurs, nous avons mis en évidence que l'efficacité de désagrégation d'Hsp70 et l'affinité des chaperonnes Hsp40 vis-à-vis de leur substrat n'étaient pas corrélées positivement. Nous avons également montré que ces trois chaperonnes Hsp40 étaient directement impliquées dans la spécificité des fonctions accomplies par les chaperonnes Hsp70. En effet, DnaK en présence de CbpA assure la désagrégation de large agrégats protéiques avec une efficacité nettement plus accrue qu'en présence de DnaJ.
Resumo:
Realistic nucleon-nucleon interactions induce correlations to the nuclear many-body system, which lead to a fragmentation of the single-particle strength over a wide range of energies and momenta. We address the question of how this fragmentation affects the thermodynamical properties of nuclear matter. In particular, we show that the entropy can be computed with the help of a spectral function, which can be evaluated in terms of the self-energy obtained in the self-consistent Green's function approach. Results for the density and temperature dependences of the entropy per particle for symmetric nuclear matter are presented and compared to the results of lowest order finite-temperature Brueckner-Hartree-Fock calculations. The effects of correlations on the calculated entropy are small, if the appropriate quasiparticle approximation is used. The results demonstrate the thermodynamical consistency of the self-consistent T-matrix approximation for the evaluation of the Green's functions.
Resumo:
Incongruous management techniques have been associated with some significant loss of agricultural land to degradation in many parts of the world. Land degradation results in the alteration of physical, chemical and biological properties of the soil, thereby posing a serious threat to sustainable agricultural development. In this study, our objective is to evaluate the changes in a Cambisol structure under six land use systems using the load bearing capacity model. Sampling was conducted in Amazonas Region, Brazil, in the following land use: a) young secondary forest; b) old secondary forest; c) forest; d) pasture; e) cropping, and f) agroforestry. To obtain the load bearing capacity models the undisturbed soil samples were collected in those land use systems and subjected to the uniaxial compression test. These models were used to evaluate which land use system preserved or degraded the Cambisol structure. The results of the bulk density and total porosity of the soil samples were not adequate to quantify structural degradation in Cambisol. Using the forest topsoil level (0-0.03 m) as a reference, it was observed that pasture land use system was most severe in the degradation of the soil structure while the structure were most preserved under old secondary forest, cropping system and forest. At the subsoil level (0.10-0.13 m depth), the soil structure was most degraded in the cropping land use system while it was most preserved in young secondary forest and pasture. At the 0.20-0.23 m depth, soil structure degradation was most severe in the old secondary forest system and well preserved in young secondary forest, cropping and agroforestry.
Resumo:
Ion channels and transporters play a critical role in ion and fluid homeostasis and thus in normal animal physiology and pathology. Tight regulation of these transmembrane proteins is therefore essential. In recent years, many studies have focused their attention on the role of the ubiquitin system in regulating ion channels and transporters, initialed by the discoveries of the role of this system in processing of Cystic Fibrosis Transmembrane Regulator (CFTR), and in regulating endocytosis of the epithelial Na(+) channel (ENaC) by the Nedd4 family of ubiquitin ligases (mainly Nedd4-2). In this review, we discuss the role of the ubiquitin system in ER Associated Degradation (ERAD) of ion channels, and in the regulation of endocytosis and lysosomal sorting of ion channels and transporters, focusing primarily in mammalian cells. We also briefly discuss the role of ubiquitin like molecules (such as SUMO) in such regulation, for which much less is known so far.
Resumo:
Background: Network reconstructions at the cell level are a major development in Systems Biology. However, we are far from fully exploiting its potentialities. Often, the incremental complexity of the pursued systems overrides experimental capabilities, or increasingly sophisticated protocols are underutilized to merely refine confidence levels of already established interactions. For metabolic networks, the currently employed confidence scoring system rates reactions discretely according to nested categories of experimental evidence or model-based likelihood. Results: Here, we propose a complementary network-based scoring system that exploits the statistical regularities of a metabolic network as a bipartite graph. As an illustration, we apply it to the metabolism of Escherichia coli. The model is adjusted to the observations to derive connection probabilities between individual metabolite-reaction pairs and, after validation, to assess the reliability of each reaction in probabilistic terms. This network-based scoring system uncovers very specific reactions that could be functionally or evolutionary important, identifies prominent experimental targets, and enables further confirmation of modeling results. Conclusions: We foresee a wide range of potential applications at different sub-cellular or supra-cellular levels of biological interactions given the natural bipartivity of many biological networks.
Resumo:
The Catalan historian Miquel Batllori (1909-2003), had developed an important performance in many aspects of intellectual activities. He developed an extensive studies in many historical subjects. The author considers mainly the Batllori works connected with cultural history.
Resumo:
The Catalan historian Miquel Batllori (1909-2003), had developed an important performance in many aspects of intellectual activities. He developed an extensive studies in many historical subjects. The author considers mainly the Batllori works connected with cultural history.
Resumo:
Many basic physiological functions exhibit circadian rhythmicity. These functional rhythms are driven, in part, by the circadian clock, an ubiquitous molecular mechanism allowing cells and tissues to anticipate regular environmental events and to prepare for them. This mechanism has been shown to play a particularly important role in maintaining stability (homeostasis) of internal conditions. Because the homeostatic equilibrium is continuously challenged by environmental changes, the role of the circadian clock is thought to consist in the anticipative adjustment of homeostatic pathways in relation with the 24h environmental cycle. The kidney is the principal organ responsible for the regulation of the composition and volume of extracellular fluids (ECF). Several major parameters of kidney function, including renal plasma flow (RPF), glomerular filtration rate (GFR) and tubular reabsorption and secretion have been shown to exhibit strong circadian oscillations. Recent evidence suggest that the circadian clock can be involved in generation of these rhythms through external circadian time cues (e.g. humoral factors, activity and body temperature rhythms) or, trough the intrinsic renal circadian clock. Here, we discuss the role of renal circadian mechanisms in maintaining homeostasis of water and three major ions, namely, Na(+), K(+) and Cl(-).