950 resultados para Manganese doping
Resumo:
Sediment and oyster (Saccostrea cucullata) samples were collected at Dhanda, a fishing village in Mumbai, Maharashtra. The samples were analysed for copper, zinc, iron and manganese contents. Metal concentrations in the sediments and bioaccumulated levels in oysters were correlated. There is no positive correlation between the total sedimentary levels of metals analysed and the bioaccumulated levels of respective metals in oyster. A positive correlation between the bioavailable fractions of zinc, iron and manganese, and the bioaccumulated levels exists. Copper, however, shows a negative correlation with respect to the bioaccumulated levels.
Resumo:
Effects of zinc (Zn) and manganese (Mn) supplementation to a tricalcium phosphate (TCP) rich diet for tiger puffer have been investigated. A TCP supplement to the diet decreased the growth of fish compared to the control diet with a Ca supplementation from Ca-lactate. However, addition of either Zn or Mn to the TCP supplemented diet could not improve the growth of tiger puffer. Addition of both zinc and manganese to the TCP supplemented diet improved the growth of tiger puffer.
Resumo:
Lake Edku is one of the Nile Delta lakes. It is subjected to contaminations by several anthropogenic materials such as trace elements and other wastes. The distribution of the different chemical forms of copper and manganese has been studied using sequential extraction techniques. Chemical analysis of the sediments shows that CaCO sub(3) ranged from 3.7% to 9.6% and organic matter from 3.06% to 8.11%. The results indicate that the distribution of manganese among the six chemical forms in the sediments of the lake obeys the following order: Mn-residual>Mn-carbonate>Mn-moderately reducible>Mn-organic form>Mn-exchangeable > Mn-easily reducible fraction. Also, the data revealed that more than 50% of the total manganese was found in the residual form, while the remainder was distributed among the other forms. In contrast, more than 70% of the total copper content was associated with the five chemical forms (exchangeable, carbonate, easily and moderately reducible and organic forms). Generally, the enrichment of manganese in the residual form revealed the important role in building up of clay minerals, while the distribution of copper among the different forms reflects an important role in biological and biochemical processes.
Resumo:
A 68-day growth trial was conducted in a flow-through system to determine the effect of dietary manganese levels on growth and tissue manganese concentration of juvenile gibel carp (Carassius auratus gibelio). Seven purified diets containing 7.21, 8.46, 9.50, 10.50, 13.03, 19.72 and 22.17 mg manganese (as manganic sulfate) per kilogram diet were fed to triplicate groups of fish (initial weight 3.21 +/- 0.01 g). The results showed that dietary manganese levels did not significantly affect feed intake of the fish. Specific growth rate, feed efficiency, total hepatic superoxide dismutase activity, carcass and skeletal manganese concentration increased significantly with increased dietary manganese(P < 0.05) while condition factor decreased significantly(P < 0.05). It was concluded that dietary requirement of manganese was 13.77 mg Mn per kilogram diet. Carcass and skeletal manganese concentration could also be used to evaluate the manganese requirement. Total hepatic superoxide dismulase activity was not a sensitive indicator for dietary requirement.
Resumo:
We investigate the evolution of the Raman spectrum of defected graphene as a function of doping. Polymer electrolyte gating allows us to move the Fermi level up to 0.7 eV, as directly monitored by in situ Hall-effect measurements. For a given number of defects, we find that the intensities of the D and D' peaks decrease with increasing doping. We assign this to an increased total scattering rate of the photoexcited electrons and holes, due to the doping-dependent strength of electron-electron scattering. We present a general relation between D peak intensity and defects valid for any doping level.
Resumo:
A copper/zinc superoxide dismutase (Cu/ZnSOD) gene and a manganese superoxide dismutase (MnSOD) gene of the human parasite Clonorchis sinensis have been cloned and their gene products functionally characterized. Genes Cu/ZnSOD and MnSOD encode proteins of 16 kDa and 25.4 kDa, respectively. The deduced amino acid sequences of the two genes contained highly conserved residues required for activity and secondary structure formation of Cu/ZnSOD and MnSOD, respectively, and show up to 73.7% and 75.4% identities with their counterparts in other animals. The genomic DNA sequence analysis of Cu/ZnSOD gene revealed this as an intronless gene. Inhibitor studies with purified recombinant Cu/ ZnSOD and MnSOD, both of which were functionally expressed in Escherichia coli, confirmed that they are copper/zinc and manganese-containing SOD, respectively. Immunoblots showed that both C. sinensis Cu/ZnSOD and MnSOD should be antigenic for humans, and both, especially the C. sinensis MnSOD, exhibit extensive cross-reactions with sera of patients infected by other trematodes or cestodes. RT-PCR and SOD activity staining of parasite lysates indicate that there are no significant differences in mRNA level or SOD activity for both species of SOD, indicating cytosolic Cu/ZnSOD and MnSOD might play a comparatively important role in the C. sinensis antioxidant system.
Resumo:
The heat output of and the effect of manganese (II) on Tetrahymena shanghaiensis S(1)99 growth metabolism has been determined by means of a LKB-2277 BioActivity monitor. Different concentrations of manganese(II) ions have different effects on the growth of T. shanghaiensis. At low concentrations (0-40 mug/mL) culture growth is promoted, whereas high concentrations (60-800 mug/mL) slow growth. Furthermore, concentrations of 1200 mug/mL or greater stop the growth of this protozooa completely.
Resumo:
Using the density function theory within the generalized gradient approximation, the band structures of wurtzite ZnO, BeO and MgO have been calculated. The effective-mass parameters are fitted using the calculated eigenvalues. The Dresselhaus spin-orbit effect appears in the k[1 00] direction, and is zero in the high symmetry direction k[00 1]. The orderings of valence band split by the crystal-field and spin-orbit coupling in wurtzite ZnO, BeO and MgO are identified by analyzing the wave function characters calculated by projecting the wave functions onto p-state in the spherical harmonics. For wurtzite ZnO, the ordering of valence band is Still Gamma(7) > Gamma(9) > Gamma(7) due to the negative spin-orbit coupling splitting energy and the positive crystal-field splitting energy. Thus, the Thomas' conclusion is confirmed. For wurtzite BeO and MgO, although their orderings of valence bands are Gamma(7) > Gamma(9) > Gamma(7) too, the origins of their orderings are different from that of wurtzite ZnO. Zn1-x,YxO (Y = Mg, Be) doped with N and P atoms have been studied using first-principles method. The calculated results show that N atom doped in Zn1-x BexO has more shallow acceptor energy level with increasing the concentration of Be atom. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We have systematically investigated the magnetic properties of Si-doped (Ga,Mn)As films. When the Si content is low, both Curie temperature (T-C) and carrier density (p) decrease compared with undoped (Ga,Mn)As, whereas a monotonic increase of T-C and p is observed with further increase in the doping content of Si. We discuss the possible mechanism for the changes obtained by different Si doping contents and attribute the results to a competition between the existence of Si-Ga (Si substitutes for Ga site) that acts as a donor and Si-I (Si interstitials) which is in favor of the improvement of ferromagnetism. (C) 2008 Elsevier B.V. All rights reserved.