996 resultados para Manganese compounds
Resumo:
Thermal decomposition of powdered ammonium perchlorate, catalysed by manganese dioxide (MnO2), has been studied in the low concentration ranges of the catalyst. MnO2 sensitises the thermal decomposition of ammonium perchlorate. The activation energy estimations of catalysed ammonium perchlorate show that the value is about 30 kcal/mol throughout the low and the high temperature regions whereas uncatalysed ammonium perchlorate gives two activation energies, 20 kcal/mol in the low temperature region (280-320°C) and 60 kcal/mol in the higher temperature region (350-390°C). This behaviour has been explained on the basis of an electron transfer process. The effectiveness of MnO2 in the thermal decomposition further increases on pre-heating the sample at 50°C for two weeks; manganese ions enter the ammonium perchlorate lattice during the process of pre-heating.
Resumo:
Abstract is not available.
Resumo:
The effect of selenious acid as an addition agent in the electrodeposition of manganese was studied by analysing the current-potential curves for manganese deposition. The mechanism of action of this addition agent was found to be essentially similar to that proposed for sulphur dioxide, namely to affect the manganese deposition indirectly by influencing the hydrogen evolution reaction which is a parallel reaction at the electrode surface.
Resumo:
The rates of NADH oxidation in presence of xanthine oxidase increase to a small and variable extent on addition of high concentrations of lactate dehydrogenase and other dehydrogenases. This heat stable activity is similar to polyvanadate-stimulation with respect to pH profile and SOD sensitivity. Isocitric dehydrogenase (NADP-specific) showed heat labile, SOD-sensitive polyvanadate-stimulated NADH oxidation activity. Polyvanadate-stimulated SOD-sensitive NADH oxidation was also found to occur with riboflavin, FMN and FAD in presence of a non-specific protein, BSA, suggesting that some flavoproteins may possess this activity.
Resumo:
An easy and convenient one-step procedure for the conversion of alpha,beta-unsaturated carbonyl compounds into their corresponding bromo-enones using NBS-Et3N center dot 3HBr in the presence of potassium carbonate in dichloromethane at 0 degrees C to room temperature under very mild conditions in high yields and significantly shorter times, is reported.
Resumo:
Checkpoint-1 kinase plays an important role in the G(2)M cell cycle control, therefore its inhibition by small molecules is of great therapeutic interest in oncology. In this paper, we have reported the virtual screening of an in-house library of 2499 pyranopyrazole derivatives against the ATP-binding site of Chk1 kinase using Glide 5.0 program, which resulted in six hits. All these ligands were docked into the site forming most crucial interactions with Cys87, Glu91 and Leu15 residues. From the observed results these ligands are suggested to be potent inhibitors of Chk1 kinase with sufficient scope for further elaboration.
Resumo:
Three inorganic-organic hybrid framework cadmium thiosulfate phases have been investigated for adsorption and photodegradation of organic dye molecules. Different classes of organic dyes, viz., triaryl methane, azo, xanthene, anthraquinone, have been studied. The anionic dyes with sulfonate groups appear to readily adsorb on the cadmium thiosulfate compounds in an aqueous medium. The adsorption of the dye molecules, however, does not create any structural changes on the cadmium thiosulfate compounds, though weak electronic interactions have been observed. The adsorbed dyes have been desorbed partially in an alcoholic medium, suggesting possible applications in scavenging specific anionic dyes from the aqueous solutions. Langmuir adsorption/desorption isotherms have been used to model this behavior. UV-assisted (lambda(max) = 365 nm) photocatalytic decomposition studies on the cationic dyes indicate reasonable activity comparable with that of Degussa P-25 (TiO2) catalyst. Sunlight assisted photocatalyti studies have been carried out in detail employing hybrid framework compounds. The Langmuir-Hinshelwood kinetics model, employed to follow the degradation profile of the organic dyes, indicates that the photocatalytic degradation follows the order: triaryl methane > azo > xanthene.
Resumo:
Batch adsorption of fluoride onto manganese dioxide-coated activated alumina (MCAA) has been studied. Adsorption experiments were carried out at various pH (3–9), time interval (0–6 h), adsorbent dose (1–16 g/l), initial fluoride concentration (1–25 mg/l) and in the presence of different anions. Adsorption isotherms have been modeled using Freundlich, Langmuir and Dubinin–Raduskevich isotherms and adsorption followed Langmuir isotherm model. Kinetic studies revealed that the adsorption followed second-order rate kinetics. MCAA could remove fluoride effectively (up to 0.2 mg/l) at pH 7 in 3 h with 8 g/l adsorbent dose when 10 mg/l of fluoride was present in 50 ml of water. In the presence of other anions, the adsorption of fluoride was retared. The mechanism of fluoride uptake by MCAA is due to physical adsorption as well as through intraparticle diffusion which was confirmed by kinetics, Dubinin–Raduskevich isotherm, zeta-potential measurements and mapping studies of energy-dispersive analysis of X-ray.
Resumo:
The wear resistance of high chromium iron is well recorded. However, the same is not the case as regards the use of manganese at higher percentages in high chromium irons and its influence on wear behaviour. Hence, this work highlights the slurry wear characteristics of chromium 16–19%) iron following the introduction of manganese at two levels i.e. 5 and 10%. It is known that the wear properties are dictated by the microstructural features. To alter the structure, the cooling rate of casting has been varied by adopting two different types of moulds (i.e. sand and metal) and subsequently subjecting to thermal treatment. The as-cast and heat treated samples are examined for microstructure and then evaluated for hardness and slurry erosion properties. As the manganese content is increased from 5 to 10%, the hardness showed a decrease in value both in the as-cast and heat treated conditions. The slurry erosion loss, expectedly, showed an increase irrespective of the sample condition (i.e. mould type/heat treatment adopted). The findings are corroborated with the microstructural features obtained through optical and scanning electron microscopy.
Resumo:
A novel manganese phosphite-oxalate, [C2N2H10][Mn-2(II)(OH2)(2)(HPO3)(2)(C2O4)] has been hydothermally synthesized and its structure determined by single-crystal X-ray diffraction. The structure consists of neutral manganese phosphite layers, [Mn(HPO3)](infinity), formed by MnO6 octahedra and HPO3 units, cross-linked by the oxalate moieties. The organic cations occupy the middle of the 8-membered one dimensional channels. Magnetic studies indicate weak antiferromagnetic interactions between the Mn2+ ions. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Abrasion and slurry erosion behaviour of chromium-manganese iron samples with chromium (Cr) in the range similar to 16-19% and manganese (Mn) at 5 and 10% levels have been characterized for hardness followed by microstructural examination using optical and scanning electron microscopy. Positron lifetime studies have been conducted to understand the defects/microporosity influence on the microstructure. The samples were heat treated and characterized to understand the structural transformations in the matrix. The data reveals that hardness decreased with increase in Mn content from 5 to 10% in the first instance and then increase in the section size in the other case, irrespective of the sample conditions. The abrasion and slurry erosion losses show increase with increase in the section size as well as with increase in Mn content. The positron results show that as hardness increases from as-cast to heat treated sample, the positron trapping rate and hence defect concentration showed opposite trend as expected. So a good correlation between defects concentration and the hardness has been observed. These findings also corroborate well with the microstructural features obtained from optical and scanning electron microscopy. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
Bacteria play a vital role in bringing about Mn(II) oxidation in the natural environment. A study was conducted to identify the potential threat offered by these bacteria in bringing about biomineralisation of manganese dioxide on titanium surfaces exposed to seawater. During the study it was observed that the bacteria such as Pseudomonas and Bacillus formed brown colonies on agar plates amended with Mn2+ indicating their ability to oxidize Mn(II). These colonies showed distinct morphologies when grown on plates containing Mn(II) while they formed normal colonies in the absence of Mn.(II).Hence it is possible that these morphologically distinct structures produced by the bacterial colonies assist these bacteria to perform this function of Mn-oxidation.
Resumo:
The conversion of a metastable phase into a thermodynamically stable phase takes place via the formation of clusters. Clusters of different sizes are formed spontaneously within the metastable mother phase, but only those larger than a certain size, called the critical size, will end up growing into a new phase. There are two types of nucleation: homogeneous, where the clusters appear in a uniform phase, and heterogeneous, when pre-existing surfaces are available and clusters form on them. The nucleation of aerosol particles from gas-phase molecules is connected not only with inorganic compounds, but also with nonvolatile organic substances found in atmosphere. The question is which ones of the myriad of organic species have the right properties and are able to participate in nucleation phenomena. This thesis discusses both homogeneous and heterogeneous nucleation, having as theoretical tool the classical nucleation theory (CNT) based on thermodynamics. Different classes of organics are investigated. The members of the first class are four dicarboxylic acids (succinic, glutaric, malonic and adipic). They can be found in both the gas and particulate phases, and represent good candidates for the aerosol formation due to their low vapor pressure and solubility. Their influence on the nucleation process has not been largely investigated in the literature and it is not fully established. The accuracy of the CNT predictions for binary water-dicarboxylic acid systems depends significantly on the good knowledge of the thermophysical properties of the organics and their aqueous solutions. A large part of the thesis is dedicated to this issue. We have shown that homogeneous and heterogeneous nucleation of succinic, glutaric and malonic acids in combination with water is unlikely to happen in atmospheric conditions. However, it seems that adipic acid could participate in the nucleation process in conditions occurring in the upper troposphere. The second class of organics is represented by n-nonane and n-propanol. Their thermophysical properties are well established, and experiments on these substances have been performed. The experimental data of binary homogeneous and heterogeneous nucleation have been compared with the theoretical predictions. Although the n-nonane - n-propanol mixture is far from being ideal, CNT seems to behave fairly well, especially when calculating the cluster composition. In the case of heterogeneous nucleation, it has been found that better characterization of the substrate - liquid interaction by means of line tension and microscopic contact angle leads to a significant improvement of the CNT prediction. Unfortunately, this can not be achieved without well defined experimental data.