900 resultados para Malocclusion, angle class II
Resumo:
CD4+ T cells recognize major histocompatibility complex (MHC) class II-bound peptides that are primarily obtained from extracellular sources. Endogenously synthesized proteins that readily enter the MHC class I presentation pathway are generally excluded from the MHC class II presentation pathway. We show here that endogenously synthesized ovalbumin or hen egg lysozyme can be efficiently presented as peptide-MHC class II complexes when they are expressed as fusion proteins with the invariant chain (Ii). Similar to the wild-type Ii, the Ii-antigen fusion proteins were associated intracellularly with MHC molecules. Most efficient expression of endogenous peptide-MHC complex was obtained with fusion proteins that contained the endosomal targeting signal within the N-terminal cytoplasmic Ii residues but did not require the luminal residues of Ii that are known to bind MHC molecules. These results suggest that signals within the Ii can allow endogenously synthesized proteins to efficiently enter the MHC class II presentation pathway. They also suggest a strategy for identifying unknown antigens presented by MHC class II molecules.
Resumo:
Previous studies have failed to detect an interaction between monomeric soluble CD4 (sCD4) and class II major histocompatibility complex (MHC) proteins, suggesting that oligomerization of CD4 on the cell surface may be required to form a stable class II MHC binding site. To test this possibility, we transfected the F43I CD4 mutant, which is incapable of binding to class II MHC or human immunodeficiency virus (HIV) gp120, into COS-7 cells together with wild-type CD4 (wtCD4). Expression of F43I results in a dominant negative effect: no class II MHC binding is observed even though wtCD4 expression is preserved. Apparently, F43I associates with wtCD4 oligomers and interferes with the formation of functional class II MHC binding structures. In contrast, F43I does not affect the binding of gp120 to wtCD4, implying that gp120 binds to a CD4 monomer. By production and characterization of chimeric CD4 molecules, we show that domains 3 and/or 4 appear to be involved in oligomerization. Several models of the CD4-class II MHC interaction are offered, including the possibility that one or two CD4 molecules initially interact with class II MHC dimers and further associate to create larger complexes important for facilitating T-cell receptor crosslinking.
Resumo:
Major histocompatibility complex (MHC) genes encode cell surface proteins whose function is to bind and present intracellularly processed peptides to T lymphocytes of the immune system. Extensive MHC diversity has been documented in many species and is maintained by some form of balancing selection. We report here that both European and North American populations of moose (Alces alces) exhibit very low levels of genetic diversity at an expressed MHC class II DRB locus. The observed polymorphism was restricted to six amino acid substitutions, all in the peptide binding site, and four of these were shared between continents. The data imply that the moose have lost MHC diversity in a population bottleneck, prior to the divergence of the Old and New World subspecies. Sequence analysis of mtDNA showed that the two subspecies diverged at least 100,000 years ago. Thus, viable moose populations with very restricted MHC diversity have been maintained for a long period of time. Both positive selection for polymorphism and intraexonic recombination have contributed to the generation of MHC diversity after the putative bottleneck.
Resumo:
Mode of access: Internet.
Resumo:
Ketol-acid reductoisomerase (KARI; EC 1.1.1.86) catalyzes two steps in the biosynthesis of branched-chain amino acids. Amino acid sequence comparisons across species reveal that there are two types of this enzyme: a short form (Class 1) found in fungi and most bacteria, and a long form (Class 11) typical of plants. Crystal structures of each have been reported previously. However, some bacteria such as Escherichia coli possess a long form, where the amino acid sequence differs appreciably from that found in plants. Here, we report the crystal structure of the E. coli enzyme at 2.6 A resolution, the first three-dimensional structure of any bacterial Class 11 KARI. The enzyme consists of two domains, one with mixed alpha/beta structure, which is similar to that found in other pyridine nucleotide-dependent dehydrogenases. The second domain is mainly alpha-helical and shows strong evidence of internal duplication. Comparison of the active sites between KARI of E. coli, Pseudomonas aeruginosa, and spinach shows that most residues occupy conserved positions in the active site. E. coli KARI was crystallized as a tetramer, the likely biologically active unit. This contrasts with P. aeruginosa KARI, which forms a dodecamer, and spinach KARI, a dimer. In the E. coli KARI tetramer, a novel subunit-to-subunit interacting surface is formed by a symmetrical pair of bulbous protrusions.
Resumo:
Motivation: While processing of MHC class II antigens for presentation to helper T-cells is essential for normal immune response, it is also implicated in the pathogenesis of autoimmune disorders and hypersensitivity reactions. Sequence-based computational techniques for predicting HLA-DQ binding peptides have encountered limited success, with few prediction techniques developed using three-dimensional models. Methods: We describe a structure-based prediction model for modeling peptide-DQ3.2 beta complexes. We have developed a rapid and accurate protocol for docking candidate peptides into the DQ3.2 beta receptor and a scoring function to discriminate binders from the background. The scoring function was rigorously trained, tested and validated using experimentally verified DQ3.2 beta binding and non-binding peptides obtained from biochemical and functional studies. Results: Our model predicts DQ3.2 beta binding peptides with high accuracy [area under the receiver operating characteristic (ROC) curve A(ROC) > 0.90], compared with experimental data. We investigated the binding patterns of DQ3.2 beta peptides and illustrate that several registers exist within a candidate binding peptide. Further analysis reveals that peptides with multiple registers occur predominantly for high-affinity binders.
Resumo:
Este estudo avaliou os efeitos esqueléticos da tração reversa da maxila utilizando imagens 2D (telerradiografia lateral) geradas a partir da tomografia de feixe cônico (imagens 3D). A amostra foi composta por 20 crianças (15 do gênero feminino, e 5 do masculino), com idade variando de 5,6 a 10,7 anos que apresentavam má-oclusão de Classe III de Angle. A tomografia foi realizada antes do tratamento (T1) e logo após o tratamento (T2). O tratamento foi realizado por meio da tração reversa da maxila utilizando-se o aparelho expansor Hyrax associado à máscara facial individualizada, com força de 600 a 800g de cada lado, durante 14 horas por dia. A correção da relação de caninos em Classe I ou com sua sobrecorreção em Classe II foi obtida após 4 a 8 meses de tratamento. Para verificar o erro sistemático e casual foi utilizado o teste t pareado e a fórmula de Dahlberg, respectivamente. O teste t pareado (p<0,05) mostrou diferença significante entre as medidas cefalométricas obtidas em T1 e T2. Na maxila houve aumento do SNA 2,2°, A-Nperp 1,47mm e em Co-A 2,58mm. Na mandíbula, SNB diminuiu -0,54° e P-Nperp, -1,45mm, enquanto Co-Gn aumentou 1,04mm. Houve melhora na relação maxilo-mandibular ANB 2,74° e Wits 4,23mm. As variáveis GoGn.SN, Gn.SN, FH.Md, Mx.Md, e AFAI aumentaram demonstrando que houve uma rotação da mandíbula no sentido horário. O plano palatino rotacionou no sentido anti-horário. Pode se concluir que o tratamento de tração reversa da maxila na idade precoce promoveu uma melhora na relação maxilo-mandibular devido a um avanço da maxila e um deslocamento da mandíbula para baixo e para trás.
Resumo:
O objetivo deste estudo retrospectivo foi comparar a eficiência oclusal do tratamento ortopédico com os aparelhos funcionais Regulador de Função Fränkel-2 e Bionator de Balters em um estágio de desenvolvimento dental diferente e comparar com um grupo controle. A amostra constituiu-se de 45 registros de documentações, pertencentes ao arquivo do programa de pós-graduação em Odontologia, área de concentração Ortodontia, da Universidade Metodista de São Paulo, com má oclusão inicial de Classe II bilateral, divisão 1, sendo 15 pacientes provenientes do grupo tratados com Bionator (grupo 1) com média de idade incial de 8,56 anos e com 80% dos casos em um estágio de desenvolvimento dental-2 (DS 2), 15 pacientes tratados com RF-2 (grupo 2) com média de idade inicial de 10,71 anos e com 80% dos casos em um estágio de desenvolvimento dental-3 (DS 3), e 15 pacientes controle (grupo 3) com media de idade incial de 10,03 anos e com estágio de desenvolvimento dental compatível com os grupos 1 e 2. Os grupos foram divididos em duas fases, de acordo com o período de avaliação: T1:início de tratamento e T2: final de tratamento, totalizando 90 pares de modelos. As avaliações oclusais foram realizadas em modelos de gesso, utilizando o Índice PAR com auxílio da régua PAR e de um paquímetro digital devidamente calibrado. Para comparação entre os três grupos foi utilizado Análise de Variância a um critério e em seguida o Teste de Tukey. A severidade da má oclusão (PAR Inicial) foi semelhante em ambos os grupos, porém, o PAR final apresentou uma diferença estatisticamente significante onde o percentual de redução do índice PAR para o grupo 1 foi de 20,72%, para o grupo 2 foi de 60,06% e no grupo 3 não houve alteração significante do valor do Índice PAR. O presente estudo conclui que o tratamento da má oclusão de Classe II, 1a divisão é mais eficiente quando iniciado no estágio de desenvolvimento dental 3 (DS 3) do que no estágio de desenvolvimento dental 2 (DS2). Além disso, ressalta-se a importância do uso mais prolongado do aparelho ortopédico, já que os pacientes do grupo 2 apresentaram melhores resultados oclusais.(AU)
Resumo:
Vaccines are the greatest single instrument of prophylaxis against infectious diseases, with immeasurable benefits to human wellbeing. The accurate and reliable prediction of peptide-MHC binding is fundamental to the robust identification of T-cell epitopes and thus the successful design of peptide- and protein-based vaccines. The prediction of MHC class II peptide binding has hitherto proved recalcitrant and refractory. Here we illustrate the utility of existing computational tools for in silico prediction of peptides binding to class II MHCs. Most of the methods, tested in the present study, detect more than the half of the true binders in the top 5% of all possible nonamers generated from one protein. This number increases in the top 10% and 15% and then does not change significantly. For the top 15% the identified binders approach 86%. In terms of lab work this means 85% less expenditure on materials, labour and time. We show that while existing caveats are well founded, nonetheless use of computational models of class II binding can still offer viable help to the work of the immunologist and vaccinologist.
Resumo:
MHC class II proteins bind oligopeptide fragments derived from proteolysis of pathogen antigens, presenting them at the cell surface for recognition by CD4+ T cells. Human MHC class II alleles are grouped into three loci: HLA-DP, HLA-DQ and HLA-DR. In contrast to HLA-DR and HLA-DQ, HLA-DP proteins have not been studied extensively, as they have been viewed as less important in immune responses than DRs and DQs. However, it is now known that HLA-DP alleles are associated with many autoimmune diseases. Quite recently, the X-ray structure of the HLA-DP2 molecule (DPA*0103, DPB1*0201) in complex with a self-peptide derived from the HLA-DR a-chain has been determined. In the present study, we applied a validated molecular docking protocol to a library of 247 modelled peptide-DP2 complexes, seeking to assess the contribution made by each of the 20 naturally occurred amino acids at each of the nine binding core peptide positions and the four flanking residues (two on both sides).
Resumo:
Class II Major Histocompatibility Complex (MHC) molecules have an open-ended binding groove which can accommodate peptides of varying lengths. Several studies have demonstrated that peptide flanking residues (PFRs) which lie outside the core binding groove can influence peptide binding and T cell recognition. By using data from the AntiJen database we were able to characterise systematically the influence of PFRs on peptide affinity for MHC class II molecules.
Resumo:
Antigenic peptide is presented to a T-cell receptor (TCR) through the formation of a stable complex with a major histocompatibility complex (MHC) molecule. Various predictive algorithms have been developed to estimate a peptide's capacity to form a stable complex with a given MHC class II allele, a technique integral to the strategy of vaccine design. These have previously incorporated such computational techniques as quantitative matrices and neural networks. A novel predictive technique is described, which uses molecular modeling of predetermined crystal structures to estimate the stability of an MHC class II-peptide complex. The structures are remodeled, energy minimized, and annealed before the energetic interaction is calculated.
Resumo:
Motivation: T-cell epitope identification is a critical immunoinformatic problem within vaccine design. To be an epitope, a peptide must bind an MHC protein. Results: Here, we present EpiTOP, the first server predicting MHC class II binding based on proteochemometrics, a QSAR approach for ligands binding to several related proteins. EpiTOP uses a quantitative matrix to predict binding to 12 HLA-DRB1 alleles. It identifies 89% of known epitopes within the top 20% of predicted binders, reducing laboratory labour, materials and time by 80%. EpiTOP is easy to use, gives comprehensive quantitative predictions and will be expanded and updated with new quantitative matrices over time.