960 resultados para Magnetron-sputtering deposition
Resumo:
In this work we have developed a way to grow Fe/MgO(100) monocrystals by magnetron sputtering DC. We investigated the growing in a temperature range among 100 oC and 300 oC. Structural and magneto-crystalline properties were studied by different experimental techniques. Thickness and surface roughness of the films were investigated by atomic force microscopy, while magneto-crystalline properties were investigated by magneto-optical Kerr effect and ferromagnetic resonance. Our results show that as we increase the deposition temperature, the magneto-crystalline anisotropy of the films also increases, following the equation of Avrami. The best temperature value to make a film is 300 oC. As the main result, we built a base of magnetoresistence devices and as an aplication, we present measurements of Fe/Cr/Fe trilayer coupling. In a second work we investigated the temperature dependence of the first three interlayer spacings of Ag(100) surface using low energy electron diffraction. A linear expansion model of crystal surface was used and the values of Debye temperatures of the first two layers and thermal expansion coefficient were determinated. A relaxation of 1% was found for Ag(100) surface and these results are matched with faces (110) and (111) of the silver. iv
Resumo:
The growth of nanocrystalline Ga1-zMnxN (0.00 <= x <= 0.18) films grown by reactive RF-magnetron sputtering is focused here for the first time. The films were grown in a N-2 atmosphere by co-sputtering technique using a Ga target covered with small pieces of Mn onto c-GaAs (10 0), c-Si (10 0) and amorphous SiO2 substrates maintained at 500 K. Scanning electron microscopy and X-ray diffraction (XRD) experiments did not show any evidence for Mn segregation within the studied composition range. EDX measurements show that the Mn concentration is increased monotonically with the fraction of the target area covered by Mn. The XRD characterization show that the films are nanocrystalline, the crystallites having mean grain sizes in the 15-19 nm range and wurtzite structure with preferential growth orientation along the c-axis direction. The lattice parameters of alpha-GaN (a and c) increase practically linearly with the increase of Mn incorporation. The changes in the structural properties of our films due to the Mn incorporation are similar to those that occur in ferromagnetic GaMnN single-crystal films. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fabrication and optical characterization of Tm3+/Yb3+ codoped PbO-GeO2 (PGO) pedestal-type waveguides are investigated in this work. It is important to mention that, to the best of authors' knowledge, the use of PGO pedestal-type waveguide has not been studied before. PGO thin films codoped with Tm3+ and Yb3+ were obtained through RF magnetron sputtering technique. The pedestal profile was obtained using conventional optical lithography procedures, followed by plasma etching and sputtering deposition. The profile of Tm3+/Yb3+ codoped PGO waveguides was observed by means of Scanning Electron Microscopy (SEM) measurements. Also the infrared and infrared-to-visible frequency upconversion luminescences of Tm3+ ions were measured exciting the samples with a cw 980 nm diode laser. Propagation losses around 11 dB/cm and 9 dB/cm were obtained at 630 and 1050 nm, respectively, for waveguides in the 20-100 μm width range. Single-mode propagation was observed for waveguides width up to 12 μm and 7 μm, at 1050 nm and 630 nm, respectively; larger waveguides width provided multi-mode propagation. The present results corroborate the possibility of using Tm3+/Yb3+ codoped PGO thin films as active waveguide for photonic applications. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Purpose: The purpose of this study was to evaluate the effect of diamond-like carbon thin films doped and undoped with silver nanoparticles coating poly(methyl methacrylate) (PMMA) on Candida albicans biofilm formation. The control of biofilm formation is important to prevent oral diseases in denture users. Materials and Methods: Forty-five PMMA disks were obtained, finished, cleaned in an ultrasonic bath, and divided into three groups: Gc, no surface coating (control group); Gdlc, coated with diamond-like carbon film; and Gag, coated with diamond-like carbon film doped with silver nanoparticles. The films were deposited using a reactive magnetron sputtering system (physical vapor deposition process). The specimens were characterized by optical profilometry, atomic force microscopy, and Rutherford backscattering spectroscopy analyses that determined differences in chemical composition and morphological structure. Following sterilization of the specimens by γ-ray irradiation, C. albicans (ATCC 18804) biofilms were formed by immersion in 2 ml of Sabouraud dextrose broth inoculated with a standardized fungal suspension. After 24 hours, the number of colony forming units (cfu) per specimen was counted. Data concerning biofilm formation were analyzed using ANOVA and the Tukey test (p < 0.05). Results: C. albicans biofilm formation was significantly influenced by the films (p < 0.00001), reducing the number of cfu, while not affecting the roughness parameters (p > 0.05). The Tukey test showed no significant difference between Gdlc and Gag. Films deposited were extremely thin (∼50 nm). The silver particles presented a diameter between 60 and 120 nm and regular distribution throughout the film surface (to Gag). Conclusion: Diamond-like carbon films, doped or undoped with silver nanoparticles, coating the base of PMMA-based dentures could be an alternative procedure for preventing candidosis in denture users. © 2013 by the American College of Prosthodontists.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Zinc oxide (ZnO) and aluminum-doped zinc oxide (ZnO:Al) thin films were deposited onto glass and silicon substrates by RF magnetron sputtering using a zinc-aluminum target. Both films were deposited at a growth rate of 12.5 nm/min to a thickness of around 750 nm. In the visible region, the films exhibit optical transmittances which are greater than 80%. The optical energy gap of ZnO films increased from 3.28 eV to 3.36 eV upon doping with Al. This increase is related to the increase in carrier density from 5.9 × 1018 cm-3 to 2.6 × 1019 cm-3. The RMS surface roughness of ZnO films grown on glass increased from 14 to 28 nm even with only 0.9% at Al content. XRD analysis revealed that the ZnO films are polycrystalline with preferential growth parallel to the (002) plane, which corresponds to the wurtzite structure of ZnO.
Resumo:
Using inert gas condensation techniques the properties of sputtered neodymium-iron-born clusters were investigated. A D.C. magnetron sputtering source created vaporous Nd-Fe-B which was then condensed into clusters and deposited onto silicon substrates. A composite target of Nd-Fe-B discs on an iron plate and a composite target of Nd-(Fe-Co)-B were utilized to create clusters. The clusters were coated with a carbon layer through R.F. sputtering to prevent oxidation. Samples were investigated in the TEM and showed a size distribution with an average particle diameter of 8.11 nm. The clusters, upon deposition, were amorphous as indicated by diffuse diffraction patterns obtained through SAD. The EDS showed compositionally a direct correlation in the ratio of rare-earth to transition metals between the target and deposited samples. The magnetic properties of the as-deposited clusters showed superparamagnetic properties at high temperatures and ferromagnetic properties at low temperatures; these properties are indicative of rare-earth transition metal amorphous clusters. Annealing of samples showed an initial increase in the coercivity. Samples were annealed in an inert gas atmosphere at 600o C for increasing amounts of time. The samples showed an initial increase in coercivity, but showed no additional increases with additional annealing time. SAD of annealed cluster samples showed the presence of Nd2Fe17 and a bcc-Nd phase. The bcc-Nd is the result of oxidation at high temperatures created during annealing and surface interface energy. The magnetic properties of the annealed samples showed weak coercivity and a saturation magnetization equivalent to that of Nd2Fe17. The annealed clusters showed a slight increase in coercivity at low temperatures. These results indicate a loss of boron during the sputtering process.
Resumo:
Gold nanoparticles (Au-NPs) were deposited on single layer graphene (SLG) and few layers graphene (FLG) by applying the gas aggregation technique, previously adapted to a 4-gun commercial magnetron sputtering system. The samples were supported on SiO2 (280 nm)/Si substrates, and the influence of the applied DC power and deposition times on the nanoparticle-graphene system was investigated by Confocal Raman Microscopy. Analysis of the G and 2D bands of the Raman spectra shows that the integrated intensity ratio (I-2D/I-G) was higher for SLG than for FLG. For the samples produced using a sputtering power of 30W, the intensity (peak height) of the G and 2D bands increased with the deposition time, whereas for those produced applying 60W the peak heights of the G and 2D bands decreased with the deposition time. This behaviour was ascribed to the formation of larger Au-NPs aggregates in the last case. A significant increase of the Full Width Half Maximum (FWHM) of the G band for SLG and FLG was also observed as a function of the DC power and deposition time. Surprisingly, the fine details of the Raman spectra revealed an unintentional doping of SLG and FLG accompanying the increase of size and aggregation of the Au-NPs. (C) 2011 Elsevier B.V. All rights reserved.