964 resultados para Magma fragmentation


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When high-energy single-hadron production takes place inside an identified jet, there are important correlations between the fragmentation and phase-space cuts. For example, when one-hadron yields are measured in on-resonance B-factory data, a cut on the thrust event shape T is required to remove the large b-quark contribution. This leads to a dijet final-state restriction for the light-quark fragmentation process. Here, we complete our analysis of unpolarized fragmentation of (light) quarks and gluons to a light hadron h with energy fraction z in e+e−→dijet+h at the center-of-mass energy Q=10.58  GeV. In addition to the next-to-next-to-leading order resummation of the logarithms of 1−T, we include the next-to-leading order nonsingular

Relevância:

20.00% 20.00%

Publicador:

Resumo:

STUDY OBJECTIVE: In healthy subjects, arousability to inspiratory resistive loading is greater during rapid eye movement (REM) sleep compared with non-REM (NREM) sleep but is poorest in REM sleep in patients with sleep apnea. We therefore examined the hypothesis that sleep fragmentation impairs arousability, especially from REM sleep. DESIGN: Two blocks of 3 polysomnographies (separated by at least 1 week) were performed randomly. An inspiratory-loaded night followed either 2 undisturbed control nights (LN(C)) or 2 acoustically fragmented nights (LN(F)) SETTING: Sleep laboratory. PARTICIPANTS: Sixteen healthy men aged 20 to 29 years. INTERVENTIONS: In both loaded nights, an inspiratory resistive load was added via a valved facemask every 2 minutes during sleep and turned off either when arousal occurred or after 2 minutes. MEASUREMENTS AND RESULTS: During LN(F), arousability remained significantly greater in REM sleep (71% aroused within 2 minutes) compared with stage 2 (29%) or stage 3/4 (16%) sleep. After sleep fragmentation, arousability was decreased in stage 2 sleep (LN(F): 29%; LN(C): 38%; p < .05) and low in early REM sleep, increasing across the night (p < .01). In stage 3/4 sleep, neither an attenuation nor a change across the night was seen after sleep fragmentation. CONCLUSIONS: Mild sleep fragmentation is already sufficient to attenuate arousability in stage 2 sleep and to decrease arousability in early, compared with late, REM sleep. This means that sleep fragmentation affects the arousal response to increasing resistance and that the effects are different in stage 2 and REM sleep. The biologic reason for this increase in the arousal response in REM sleep across the night is not clear.