818 resultados para Machine learning,Keras,Tensorflow,Data parallelism,Model parallelism,Container,Docker
Resumo:
"February 1969."
Resumo:
Foreign Exchange trading has emerged in recent times as a significant activity in many countries. As with most forms of trading, the activity is influenced by many random parameters so that the creation of a system that effectively emulates the trading process will be very helpful. In this paper we try to create such a system using Machine learning approach to emulate trader behaviour on the Foreign Exchange market and to find the most profitable trading strategy.
Resumo:
In emergency situations, where time for blood transfusion is reduced, the O negative blood type (the universal donor) is administrated. However, sometimes even the universal donor can cause transfusion reactions that can be fatal to the patient. As commercial systems do not allow fast results and are not suitable for emergency situations, this paper presents the steps considered for the development and validation of a prototype, able to determine blood type compatibilities, even in emergency situations. Thus it is possible, using the developed system, to administer a compatible blood type, since the first blood unit transfused. In order to increase the system’s reliability, this prototype uses different approaches to classify blood types, the first of which is based on Decision Trees and the second one based on support vector machines. The features used to evaluate these classifiers are the standard deviation values, histogram, Histogram of Oriented Gradients and fast Fourier transform, computed on different regions of interest. The main characteristics of the presented prototype are small size, lightweight, easy transportation, ease of use, fast results, high reliability and low cost. These features are perfectly suited for emergency scenarios, where the prototype is expected to be used.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Building on a previous conceptual article, we present an empirically derived model of network learning - learning by a group of organizations as a group. Based on a qualitative, longitudinal, multiple-method empirical investigation, five episodes of network learning were identified. Treating each episode as a discrete analytic case, through cross-case comparison, a model of network learning is developed which reflects the common, critical features of the episodes. The model comprises three conceptual themes relating to learning outcomes, and three conceptual themes of learning process. Although closely related to conceptualizations that emphasize the social and political character of organizational learning, the model of network learning is derived from, and specifically for, more extensive networks in which relations among numerous actors may be arms-length or collaborative, and may be expected to change over time.
Resumo:
This study analyzed the health and overall landcover of citrus crops in Florida. The analysis was completed using Landsat satellite imagery available free of charge from the University of Maryland Global Landcover Change Facility. The project hypothesized that combining citrus production (economic) data with citrus area per county derived from spectral signatures would yield correlations between observable spectral reflectance throughout the year, and the fiscal impact of citrus on local economies. A positive correlation between these two data types would allow us to predict the economic impact of citrus using spectral data analysis to determine final crop harvests.
Resumo:
Questo progetto di tesi è parte di un programma più ampio chiamato TIME (Tecnologia Integrata per Mobilità Elettrica) sviluppato tra diversi gruppi di ricerca afferenti al settore meccanico, termofluidodinamico e informatico. TIME si pone l'obiettivo di migliorare la qualità dei componenti di un sistema powertrain presenti oggi sul mercato progettando un sistema general purpose adatto ad essere installato su veicoli di prima fornitura ma soprattutto su retrofit, quindi permettendo il ricondizionamento di veicoli con motore a combustione esistenti ma troppo datati. Lo studio svolto si pone l'obiettivo di identificare tutti gli aspetti di innovazione tecnologica che possono essere installati all'interno del sistema di interazione uomo-macchina. All'interno di questo progetto sarà effettuata una pianificazione di tutto il lavoro del gruppo di ricerca CIRI-ICT, partendo dallo studio normativo ed ergonomico delle interfacce dei veicoli analizzando tutti gli elementi di innovazione che potranno far parte del sistema TIME e quindi programmare tutte le attività previste al fine di raggiungere gli obiettivi prefissati, documentando opportunamente tutto il processo. Nello specifico saranno analizzate e definite le tecniche da utilizzare per poi procedere alla progettazione e implementazione di un primo sistema sperimentale di Machine Learning e Gamification con lo scopo di predire lo stato della batteria in base allo stile di guida dell'utente e incentivare quest'ultimo tramite sistemi di Gamification installati sul cruscotto ad una guida più consapevole dei consumi. Questo sistema sarà testato su dati simulati con l'obiettivo di avere un prodotto configurabile da installare sul veicolo.
Resumo:
Il riconoscimento delle gesture è un tema di ricerca che sta acquisendo sempre più popolarità, specialmente negli ultimi anni, grazie ai progressi tecnologici dei dispositivi embedded e dei sensori. Lo scopo di questa tesi è quello di utilizzare alcune tecniche di machine learning per realizzare un sistema in grado di riconoscere e classificare in tempo reale i gesti delle mani, a partire dai segnali mioelettrici (EMG) prodotti dai muscoli. Inoltre, per consentire il riconoscimento di movimenti spaziali complessi, verranno elaborati anche segnali di tipo inerziale, provenienti da una Inertial Measurement Unit (IMU) provvista di accelerometro, giroscopio e magnetometro. La prima parte della tesi, oltre ad offrire una panoramica sui dispositivi wearable e sui sensori, si occuperà di analizzare alcune tecniche per la classificazione di sequenze temporali, evidenziandone vantaggi e svantaggi. In particolare, verranno considerati approcci basati su Dynamic Time Warping (DTW), Hidden Markov Models (HMM), e reti neurali ricorrenti (RNN) di tipo Long Short-Term Memory (LSTM), che rappresentano una delle ultime evoluzioni nel campo del deep learning. La seconda parte, invece, riguarderà il progetto vero e proprio. Verrà impiegato il dispositivo wearable Myo di Thalmic Labs come caso di studio, e saranno applicate nel dettaglio le tecniche basate su DTW e HMM per progettare e realizzare un framework in grado di eseguire il riconoscimento real-time di gesture. Il capitolo finale mostrerà i risultati ottenuti (fornendo anche un confronto tra le tecniche analizzate), sia per la classificazione di gesture isolate che per il riconoscimento in tempo reale.
Resumo:
Postprint
Resumo:
Background and aims: Machine learning techniques for the text mining of cancer-related clinical documents have not been sufficiently explored. Here some techniques are presented for the pre-processing of free-text breast cancer pathology reports, with the aim of facilitating the extraction of information relevant to cancer staging.
Materials and methods: The first technique was implemented using the freely available software RapidMiner to classify the reports according to their general layout: ‘semi-structured’ and ‘unstructured’. The second technique was developed using the open source language engineering framework GATE and aimed at the prediction of chunks of the report text containing information pertaining to the cancer morphology, the tumour size, its hormone receptor status and the number of positive nodes. The classifiers were trained and tested respectively on sets of 635 and 163 manually classified or annotated reports, from the Northern Ireland Cancer Registry.
Results: The best result of 99.4% accuracy – which included only one semi-structured report predicted as unstructured – was produced by the layout classifier with the k nearest algorithm, using the binary term occurrence word vector type with stopword filter and pruning. For chunk recognition, the best results were found using the PAUM algorithm with the same parameters for all cases, except for the prediction of chunks containing cancer morphology. For semi-structured reports the performance ranged from 0.97 to 0.94 and from 0.92 to 0.83 in precision and recall, while for unstructured reports performance ranged from 0.91 to 0.64 and from 0.68 to 0.41 in precision and recall. Poor results were found when the classifier was trained on semi-structured reports but tested on unstructured.
Conclusions: These results show that it is possible and beneficial to predict the layout of reports and that the accuracy of prediction of which segments of a report may contain certain information is sensitive to the report layout and the type of information sought.