999 resultados para Macchina automatica, analisi dinamica di meccanismi, aumento di produttività
Resumo:
l’analiticità del metodo adottato ha permesso di ottenere una precisa e puntuale conoscenza del processo costruttivo, ottimo esempio per poter analizzare e confrontare i due programmi, Ms-Project 2007 e Primavera Project Planner P6.0, oggetto della presente trattazione; per comprendere quale software aiuta il Project Manager a gestire le complessità di un progetto per soddisfare i bisogni dei clienti, ad avere un controllo più stretto sulle strutture di progetto e sui suoi requisiti di rendicontazione, nonché la comprensione di tutto ciò che può ostacolare il corretto avanzamento del programma. Quale programma aiuta le aziende a pianificare e gestire sia i singoli progetti sia il programma complessivo, a implementare e monitorare i livelli di performance necessari e valutare agevolmente l’impatto delle modifiche di programma sui piani di lavoro, sui budget, sull’utilizzazione delle risorse. Un’efficace visione d’insieme dell’intero programma, combinata con la continua verifica delle metriche di produttività, consente ai program manager di mitigare proattivamente i rischi e ottenere come risultato il puntuale rispetto dei tempi e del budget.
Resumo:
Negli ultimi decenni il concetto di variabile latente ha riscosso un enorme successo nelle discipline statistiche come attestano i numerosi lavori scientifici presenti in letteratura. In particolare, nelle scienze sociali e in psicometria, l’uso del concetto di variabile latente è stato largamente adottato per far fronte al problema di misurare quantità che, in natura, non possono essere direttamente osservate. La vasta letteratura riguardante questa metodologia si espande, in maniera più limitata, anche al campo della ricerca economica ed econometrica. Nonostante esistano studi di modelli a struttura latente applicati a variabili di tipo economico, molto pochi sono i lavori che considerano variabili finanziarie e, finora, praticamente nessun ricercatore ha messo in connessione la teoria standard di portafoglio con la metodologia dei modelli statistici a variabili latenti. L’obiettivo del lavoro è quello di ricorrere alle potenzialità esplicative ed investigative dei metodi statistici a variabili latenti per l’analisi dei fenomeni finanziari. Si fa riferimento, in particolare, ai modelli a classe latente che consentono di sviluppare soluzioni metodologicamente corrette per importanti problemi ancora aperti in campo finanziario. In primo luogo, la natura stessa delle variabili finanziarie è riconducibile al paradigma delle variabili latenti. Infatti, variabili come il rischio ed il rendimento atteso non possono essere misurate direttamente e necessitano di approssimazioni per valutarne l’entità. Tuttavia, trascurare la natura non osservabile delle variabili finanziarie può portare a decisioni di investimento inopportune o, talvolta, addirittura disastrose. Secondariamente, vengono prese in considerazione le capacità dei modelli a classi latenti nel contesto della classificazione. Per i prodotti finanziari, infatti, una corretta classificazione sulla base del profilo (latente) di rischio e rendimento rappresenta il presupposto indispensabile per poter sviluppare efficaci strategie di investimento. Ci si propone, inoltre, di sviluppare un collegamento, finora mancante, tra uno dei principali riferimenti della finanza moderna, la teoria classica del portafoglio di Markowitz, e la metodologia statistica dei modelli a variabili latenti. In questo contesto, si vogliono investigare, in particolare, i benefici che i modelli a variabili latenti possono dare allo studio di ottimizzazione del profilo rischio - rendimento atteso di un portafoglio di attività finanziarie. Lo sviluppo di numeri indici dei prezzi delle attività finanziarie caratterizzati da una solida base metodologica rappresenta un ulteriore aspetto nel quale i modelli a classe latente possono svolgere un ruolo di fondamentale importanza. In particolare, si propone di analizzare il contesto dei numeri indici dei prezzi settoriali, che costituiscono uno dei riferimenti più importanti nelle strategie di diversificazione del rischio. Infine, il passaggio da una specificazione statica ad una analisi dinamica coglie aspetti metodologici di frontiera che possono essere investigati nell’ambito dei modelli markoviani a classi latenti. Il profilo latente di rischio – rendimento può essere, così, investigato in riferimento alle diverse fasi dei mercati finanziari, per le quali le probabilità di transizione consentono valutazioni di tipo previsivo di forte interesse.
Resumo:
INDICE INTRODUZIONE 1 1. DESCRIZIONE DEL SISTEMA COSTRUTTIVO 5 1.1 I pannelli modulari 5 1.2 Le pareti tozze in cemento armato gettate in opera realizzate con la tecnologia del pannello di supporto in polistirene 5 1.3 La connessione tra le pareti e la fondazione 6 1.4 Le connessioni tra pareti ortogonali 7 1.5 Le connessioni tra pareti e solai 7 1.6 Il sistema strutturale così ottenuto e le sue caratteristiche salienti 8 2. RICERCA BIBLIOGRAFICA 11 2.1 Pareti tozze e pareti snelle 11 2.2 Il comportamento scatolare 13 2.3 I muri sandwich 14 2.4 Il “ferro-cemento” 15 3. DATI DI PARTENZA 19 3.1 Schema geometrico - architettonico definitivo 19 3.2 Abaco delle sezioni e delle armature 21 3.3 Materiali e resistenze 22 3.4 Valutazione del momento di inerzia delle pareti estese debolmente armate 23 3.4.1 Generalità 23 3.4.2 Caratteristiche degli elementi provati 23 3.4.3 Formulazioni analitiche 23 3.4.4 Considerazioni sulla deformabilità dei pannelli debolmente armati 24 3.4.5 Confronto tra rigidezze sperimentali e rigidezze valutate analiticamente 26 3.4.6 Stima di un modulo elastico equivalente 26 4. ANALISI DEI CARICHI 29 4.1 Stima dei carichi di progetto della struttura 29 4.1.1 Stima dei pesi di piano 30 4.1.2 Tabella riassuntiva dei pesi di piano 31 4.2 Analisi dei carichi da applicare in fase di prova 32 4.2.1 Pesi di piano 34 4.2.2 Tabella riassuntiva dei pesi di piano 35 4.3 Pesi della struttura 36 4.3.1 Ripartizione del carico sulle pareti parallele e ortogonali 36 5. DESCRIZIONE DEL MODELLO AGLI ELEMENTI FINITI 37 5.1 Caratteristiche di modellazione 37 5.2 Caratteristiche geometriche del modello 38 5.3 Analisi dei carichi 41 5.4 Modello con shell costituite da un solo layer 43 5.4.1 Modellazione dei solai 43 5.4.2 Modellazione delle pareti 44 5.4.3 Descrizione delle caratteristiche dei materiali 46 5.4.3.1 Comportamento lineare dei materiali 46 6. ANALISI DEL COMPORTAMENTO STATICO DELLA STRUTTURA 49 6.1 Azioni statiche 49 6.2 Analisi statica 49 7. ANALISI DEL COMPORTAMENTO DINAMICO DELLA STRUTTURA 51 7.1 Determinazione del periodo proprio della struttura con il modello FEM 51 7.1.1 Modi di vibrare corrispondenti al modello con solai e pareti costituiti da elementi shell 51 7.1.1.1 Modi di vibrare con modulo pari a E 51 7.1.1.2 Modi di vibrare con modulo pari a 0,5E 51 7.1.1.3 Modi di vibrare con modulo pari a 0,1E 51 7.1.2 Modi di vibrare corrispondenti al modello con solai infinitamente rigidi e pareti costituite da elementi shell 52 7.1.2.1 Modi di vibrare con modulo pari a E 52 7.1.2.2 Modi di vibrare con modulo pari a 0,5E 52 7.1.2.3 Modi di vibrare con modulo pari a 0,1E: 52 7.1.3 Modi di vibrare corrispondenti al modello con solai irrigiditi con bielle e pareti costituite da elementi shell 53 7.1.3.1 Modi di vibrare con modulo pari a E 53 7.1.3.2 Modi di vibrare con modulo pari a 0,5E 53 7.1.3.3 Modi di vibrare con modulo pari a 0,1E 53 7.2 Calcolo del periodo proprio della struttura assimilandola ad un oscillatore semplice 59 7.2.1 Analisi svolta assumendo l’azione del sisma in ingresso in direzione X-X 59 7.2.1.1 Analisi svolta assumendo il modulo elastico E pari a 300000 Kg/cm2 59 7.2.1.1.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 59 7.2.1.1.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 61 7.2.1.1.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 63 7.2.1.1.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 66 7.2.1.2 Analisi svolta assumendo il modulo elastico E pari a 150000 Kg/cm2 69 7.2.1.2.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5E 69 7.2.1.2.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,5E 71 7.2.1.2.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 73 7.2.1.2.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 76 7.2.1.3 Analisi svolta assumendo il modulo elastico E pari a 30000 Kg/cm2 79 7.2.1.3.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1E 79 7.2.1.3.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,1E 81 7.2.1.3.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 83 7.2.1.3.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 86 7.2.2 Analisi svolta assumendo l’azione del sisma in ingresso in direzione Y-Y 89 7.2.2.1 Analisi svolta assumendo il modulo elastico E pari a 300000 Kg/cm2 89 7.2.2.1.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 89 7.2.2.1.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 91 7.2.2.1.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 93 7.2.2.1.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 98 7.2.2.1.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 103 7.2.2.1.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 105 7.2.2.1.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 107 7.2.2.1.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 112 7.2.2.2 Analisi svolta assumendo il modulo elastico E pari a 150000 Kg/cm2 117 7.2.2.2.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5E 117 7.2.2.2.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,5E 119 7.2.2.2.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 121 7.2.2.2.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 126 7.2.2.2.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5 E 131 7.2.2.2.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 133 7.2.2.2.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 135 7.2.2.2.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 140 7.2.2.3 Analisi svolta assumendo il modulo elastico E pari a 30000 Kg/cm2 145 7.2.2.3.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1E 145 7.2.2.3.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,1E 147 7.2.2.3.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 149 7.2.2.3.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 154 7.2.2.3.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1 E 159 7.2.2.3.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 161 7.2.2.3.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 163 7.2.2.3.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 168 7.3 Calcolo del periodo proprio della struttura approssimato utilizzando espressioni analitiche 174 7.3.1 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente un peso P gravante all’estremo libero 174 7.3.1.1 Riferimenti teorici: sostituzione di masse distribuite con masse concentrate 174 7.3.1.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 177 7.3.1.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 179 7.3.2 Approssimazione della struttura ad una mensola incastrata alla base, di peso Q=ql, avente un peso P gravante all’estremo libero e struttura resistente costituita dai soli “maschi murari”delle pareti parallele all’azione del sisma 181 7.3.2.1 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 181 7.3.2.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 186 7.3.3 Approssimazione della struttura ad un portale avente peso Qp = peso di un piedritto, Qt=peso del traverso e un peso P gravante sul traverso medesimo 191 7.3.3.1 Riferimenti teorici: sostituzione di masse distribuite con masse concentrate 191 7.3.3.2 Applicazione allo specifico caso di studio in esame con modulo ellastico E=300000 kg/cm2 192 7.3.3.3 Applicazione allo specifico caso di studio in esame con modulo ellastico E=30000 kg/cm2 194 7.3.4 Approssimazione della struttura ad un portale di peso Qp = peso di un piedritto, Qt=peso del traverso e avente un peso P gravante sul traverso medesimo e struttura resistente costituita dai soli “maschi murari”delle pareti parallele all’azione del sisma 196 7.3.4.1 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 196 7.3.4.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 201 7.3.5 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente le masse m1,m2....mn concentrate nei punti 1,2….n 206 7.3.5.1 Riferimenti teorici: metodo approssimato 206 7.3.5.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 207 7.3.5.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 209 7.3.6 Approssimazione della struttura ad un telaio deformabile con tavi infinitamente rigide 211 7.3.6.1 Riferimenti teorici: vibrazioni dei telai 211 7.3.6.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 212 7.3.6.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 215 7.3.7 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente masse m1,m2....mn concentrate nei punti 1,2….n e studiata come un sistema continuo 218 7.3.7.1 Riferimenti teorici: metodo energetico; Masse ripartite e concentrate; Formula di Dunkerley 218 7.3.7.1.1 Il metodo energetico 218 7.3.7.1.2 Masse ripartite e concentrate. Formula di Dunkerley 219 7.3.7.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 221 7.3.7.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 226 7.4 Calcolo del periodo della struttura approssimato mediante telaio equivalente 232 7.4.1 Dati geometrici relativi al telaio equivalente e determinazione dei carichi agenti su di esso 232 7.4.1.1 Determinazione del periodo proprio della struttura assumendo diversi valori del modulo elastico E 233 7.5 Conclusioni 234 7.5.1 Comparazione dei risultati relativi alla schematizzazione dell’edificio con una struttura ad un grado di libertà 234 7.5.2 Comparazione dei risultati relativi alla schematizzazione dell’edificio con una struttura a più gradi di libertà e a sistema continuo 236 8. ANALISI DEL COMPORTAMENTO SISMICO DELLA STRUTTURA 239 8.1 Modello con shell costituite da un solo layer 239 8.1.1 Analisi dinamica modale con spettro di risposta avente un valore di PGA pari a 0,1g 239 8.1.1.1 Generalità 239 8.1.1.2 Sollecitazioni e tensioni sulla sezione di base 242 8.1.1.2.1 Combinazione di carico ”Carichi verticali più Spettro di Risposta scalato ad un valore di PGA pari a 0,1g” 242 8.1.1.2.2 Combinazione di carico ”Spettro di Risposta scalato ad un valore di 0,1g di PGA” 245 8.1.1.3 Spostamenti di piano 248 8.1.1.4 Accelerazioni di piano 248 8.1.2 Analisi Time-History lineare con accelerogramma caratterizzato da un valore di PGA pari a 0,1g 249 8.1.2.1 Generalità 249 8.1.2.2 Sollecitazioni e tensioni sulla sezione di base 251 8.1.2.2.1 Combinazione di carico ” Carichi verticali più Accelerogramma agente in direzione Ye avente una PGA pari a 0,1g” 251 8.1.2.2.2 Combinazione di carico ” Accelerogramma agente in direzione Y avente un valore di PGA pari a 0,1g ” 254 8.1.2.3 Spostamenti di piano assoluti 257 8.1.2.4 Spostamenti di piano relativi 260 8.1.2.5 Accelerazioni di piano assolute 262 8.1.3 Analisi dinamica modale con spettro di risposta avente un valore di PGA pari a 0,3g 264 8.1.3.1 Generalità 264 8.1.3.2 Sollecitazioni e tensioni sulla sezione di base 265 8.1.
Resumo:
Le moderne tecniche di imaging e i recenti sviluppi nel campo della visione computazionale consentono sempre più diffusamente l'utilizzo di metodi di image analysis, specialmente in ambito medico e biologico, permettendo un maggiore supporto sia alla diagnosi, sia alla ricerca. Il lavoro svolto in questa tesi si pone in un contesto di ricerca di carattere interdisciplinare, e riguarda il progetto e la realizzazione di un‘interfaccia grafica per l'analisi di colture batteriche geneticamente modificate, marcate con proteine fluorescenti (GFP), acquisite tramite un microscopio ad epifluorescenza. Nota la funzione di risposta del sistema di acquisizione delle immagini, l'analisi quantitativa delle colture batteriche è effettuata mediante la misurazione di proprietà legate all'intensità della risposta al marcatore fluorescente. L'interfaccia consente un'analisi sia globale dei batteri individuati nell'immagine, sia di singoli gruppi di batteri selezionati dall'utente, fornendo utili informazioni statistiche, sia in forma grafica che numerica. Per la realizzazione dell'interfaccia sono state adottate tecniche di ingegneria del software, con particolare enfasi alla interazione uomo-macchina e seguendo criteri di usability, al fine di consentire un corretto utilizzo dello strumento anche da parte di personale senza conoscenza in campo informatico.
Resumo:
Il seguente lavoro di tesi ha come scopo l'illustrazione delle fasi di progetto di un impianto di microcogenerazione nell'ambito territoriale dell'Emilia Romagna. In particolare verrà fatta un'analisi economica di fattibilità, un'analisi energetica di calcolo delle prestazioni dell'impianto mediante norma UNI-TS 11300-IV, il progetto e la scelta dei componenti afferenti l'impianto di riscaldamento delle utenze e un'analisi dei documenti amministrativi disciplinanti la messa in funzione nonché la valorizzazione dell'energia elettrica immessa in rete. Il lavoro è stato eseguito su quindici impianti afferenti ad altrettante utenze con caratteristiche di utilizzo dell'impianto diversificate tra loro.
Resumo:
La green chemistry può essere definita come “l’utilizzo di una serie di principi che riducono o eliminano l’uso o la formazione di sostanze pericolose nella progettazione, produzione e applicazione di prodotti chimici”. . È in questo contesto che si inserisce la metodologia LCA (Life Cycle Assessment), come strumento di analisi e di valutazione. Lo scopo del presente lavoro di tesi è l’analisi degli impatti ambientali associati a processi chimici, ambito ancora poco sviluppato nella letteratura degli studi di LCA. Viene studiato e modellato il ciclo di vita (dall’ottenimento delle materie prime fino alla produzione del prodotto) della reazione di ammonossidazione per la produzione di acrilonitrile, valutando e comparando due alternative di processo: quella tradizionale, che utilizza propilene ( processo SOHIO), e le vie sintetiche che utilizzano propano, ad oggi poco sviluppate industrialmente. Sono stati pertanto creati sei scenari: due da propene (SOHIO FCC, con propene prodotto mediante Fluid Catalytic Cracking, e SOHIO Steam), e quattro da propano (ASAHI, MITSUBISHI, BP povero e ricco in propano). Nonostante la produzione dell’alcano abbia un impatto inferiore rispetto all’olefina, dovuto ai minori stadi di processo, dai risultati emerge che l’ammonossidazione di propano ha un impatto maggiore rispetto a quella del propene. Ciò è dovuto ai processi catalitici che utilizzano propano, che differiscono per composizione e prestazioni, rispetto a quelli da propene: essi risultano meno efficienti rispetto ai tradizionali, comportando maggiori consumi di reattivi in input . Dai risultati emerge che gli scenari da propano presentano maggiori impatti globali di quelli da propene per le categorie Cambiamento climatico, Formazione di materiale e Consumo di combustibili fossili. Invece per la categoria Consumo di metalli un impatto maggiore viene attribuito ai processi che utilizzano propene, per la maggior percentuale di metalli impiegata nel sistema catalitico, rispetto al supporto. L’analisi di contributo, eseguita per valutare quali sono le fasi più impattanti, conferma i risultati. Il maggior contributo per la categoria Consumo di combustibili fossili è ascrivibile ai processi di produzione del propano, dell’ammoniaca e del solfato di ammonio ( legato all’ammoniaca non reagita ). Stessi risultati si hanno per la categoria Cambiamento climatico, mentre per la categoria Formazione di materiale particolato, gli impatti maggiori sono dati dai processi di produzione del solfato di ammonio, del propano e dell’acido solforico (necessario per neutralizzare l’ammoniaca non reagita). Per la categoria Consumo di metalli, il contributo maggiore è dato dalla presenza del catalizzatore. È stata infine eseguita un’analisi di incertezza tramite il metodo Monte Carlo, verificando la riproducibilità dei risultati.
Resumo:
Lo studio in esame si pone l'obiettivo di fornire dati sintetici ma rappresentativi del comportamento statico e sismico dell'Istituto di Matematica di Bologna (1965). Nella prima parte vengono descritte le fasi di conoscenza della geometria degli elementi e delle caratteristiche meccaniche dei materiali componenti la struttura in calcestruzzo armato. Nella seconda parte vengono descritte le verifiche condotte (SLE, SLU) e proposti i risultati sotto forma di istogrammi. Viene posta particolare attenzione alle verifiche sismiche allo SLV per le quali l' edificio mostra un comportamento critico.
Resumo:
Dopo un'introduzione sulla neccessità di ottimizzare i consumi energetici relativi all'ambito edilizio, si analizza attraverso due differenti metodologie di calcolo (dinamica/stazionaria) i fabbisogni energetici di una palazzina costituita da 15 appartamenti. Sono stati utilizzati Trnsys 17 e Termus.
Resumo:
La green chemistry può essere definita come l’applicazione dei principi fondamentali di sviluppo sostenibile, al fine di ridurre al minimo l’impiego o la formazione di sostanze pericolose nella progettazione, produzione e applicazione di prodotti chimici. È in questo contesto che si inserisce la metodologia LCA (Life Cycle Assessment), come strumento di analisi e di valutazione. Il presente lavoro di tesi è stato condotto con l’intenzione di offrire una valutazione degli impatti ambientali associati al settore dei processi chimici di interesse industriale in una prospettiva di ciclo di vita. In particolare, è stato studiato il processo di produzione di acroleina ponendo a confronto due vie di sintesi alternative: la via tradizionale che impiega propilene come materia prima, e l’alternativa da glicerolo ottenuto come sottoprodotto rinnovabile di processi industriali. Il lavoro si articola in due livelli di studio: un primo, parziale, in cui si va ad esaminare esclusivamente il processo di produzione di acroleina, non considerando gli stadi a monte per l’ottenimento delle materie prime di partenza; un secondo, più dettagliato, in cui i confini di sistema vengono ampliati all’intero ciclo produttivo. I risultati sono stati confrontati ed interpretati attraverso tre tipologie di analisi: Valutazione del danno, Analisi di contributo ed Analisi di incertezza. Dal confronto tra i due scenari parziali di produzione di acroleina, emerge come il processo da glicerolo abbia impatti globalmente maggiori rispetto al tradizionale. Tale andamento è ascrivibile ai diversi consumi energetici ed in massa del processo per l’ottenimento dell’acroleina. Successivamente, per avere una visione completa di ciascuno scenario, l’analisi è stata estesa includendo le fasi a monte di produzione delle due materie prime. Da tale confronto emerge come lo scenario più impattante risulta essere quello di produzione di acroleina partendo da glicerolo ottenuto dalla trans-esterificazione di olio di colza. Al contrario, lo scenario che impiega glicerolo prodotto come scarto della lavorazione di sego sembra essere il modello con i maggiori vantaggi ambientali. Con l’obiettivo di individuare le fasi di processo maggiormente incidenti sul carico totale e quindi sulle varie categorie d’impatto intermedie, è stata eseguita un’analisi di contributo suddividendo ciascuno scenario nei sotto-processi che lo compongono. È stata infine eseguita un’analisi di incertezza tramite il metodo Monte Carlo, verificando la riproducibilità dei risultati.
Resumo:
Negli ultimi decenni nell’Alto Adriatico, in particolare lungo la costa dell’Emilia-Romagna, si sono verificati fenomeni eutrofici con lo svilupparsi di “red tides”, con frequenza e intensità tali da aver assunto un aspetto cronico. Da questi episodi è nata l’esigenza sia di un efficiente monitoraggio dell’area, che viene svolto dal 1976 dalla Struttura Oceanografica Daphne (ARPA), sia di ricercare e studiare i meccanismi che guidano il processo. Questa zona è sotto stretta osservazione anche nell’ambito Direttiva europea 2008/56/CE, Marine Strategy Framework Directive (MSFD), in quanto l’alto Adriatico rappresenta la zona maggiormente a rischio per i fenomeni di eutrofizzazione e di bloom algali. Il lavoro di questa tesi nasce dalla necessità di approfondire diversi aspetti sollevati dalla MSFD che non vengono soddisfatti da una normale attività di monitoraggio. La frequenza e l’enorme mole di dati raccolti spesso non permette nè di riunire insieme per un unico sito tutti i parametri biotici e abiotici indicativi dello stato dell’ambiente, né di fare elaborazioni statistiche approfondite. Per fare questo sono state condotte in due siti prospicienti la località di Marina di Ravenna (costa emiliano-romagnola): DIGA SUD e GEOMAR, distanti rispettivamente 1.5 Km e 12 Km dalla costa, analisi quali-quantitative dei popolamenti fitoplanctonici presenti e concomitanti analisi dei parametri chimico-fisici (nutrienti, temperatura e salinità) dell’acqua. Il campionamento bimensile è iniziato ad aprile del 2013 ed è terminato ad ottobre dello stesso anno. Dai dati ottenuti dalle suddette analisi, avvalendosi di diversi strumenti statistici, si è cercato di capire se c’è differenza fra i due siti oggetto di studio in termini di variabili abiotiche ambientali e di popolazione fitoplanctonica dovuta ad effetto geografico (distanza dalla costa). Inoltre si è cercato di individuare come le variabili ambientali vadano ad influenzare la distribuzione dei diversi taxa fitoplanctonici e di segnalare l’eventuale presenza di specie microalgali potenzialmente tossiche e/o dannose.
Resumo:
In questo lavoro viene mostrato come costruire un modello elettromeccanico per il sistema costituito da motore elettrico-riduttore-trasmissione-carico. Il modello è progettato per essere implementato su software di simulazione. Sono illustrati aspetti relativi ai componenti del sistema, alla dinamica dei meccanismi, a modelli di perdite elettriche nei motori ed alle modalità di costruizione del software di simulazione. Sono infine mostrati i risultati di alcune simulazioni.
Resumo:
Approfondita analisi strutturare di un bilanciere di scarico di un motore navale attraverso l'utilizzo di un software che sfrutta il metodo degli elementi finiti.