817 resultados para MITOCHONDRIAL DAMAGE
Resumo:
Ataxia telangiectasia mutated (ATM) is a phosphatidyl-3-kinase-related protein kinase that functions as a central regulator of the DNA damage response in eukaryotic cells. In humans, mutations in ATM cause the devastating neurodegenerative disease ataxia telangiectasia. Previously, we characterized the homolog of ATM (AtmA) in the filamentous fungus Aspergillus nidulans. In addition to its expected role in the DNA damage response, we found that AtmA is also required for polarized hyphal growth. Here, we extended these studies by investigating which components of the DNA damage response pathway are interacting with AtmA. The AtmA(ATM) loss of function caused synthetic lethality when combined with mutation in UvsB(ATR). Our results suggest that AtmA and UvsB are interacting and they are probably partially redundant in terms of DNA damage sensing and/or repairing and polar growth. We identified and inactivated A. nidulans chkA(CHK1) and chkB(CHK2) genes. These genes are also redundantly involved in A. nidulans DNA damage response. We constructed several combinations of double mutants for Delta atmA, Delta uvsB, Delta chkA, and Delta chkB. We observed a complex genetic relationship with these mutations during the DNA replication checkpoint and DNA damage response. Finally, we observed epistatic and synergistic interactions between AtmA, and bimE(APCI), ankA(WEE1) and the cdc2-related kinase npkA, at S-phase checkpoint and in response to DNA-damaging agents.
Resumo:
In this paper we describe the efficacy of the liposomal-AlClPc (aluminum-chloro-phthalocyanine) formulation in PDT study against Ehrlich tumor cells proliferation in immunocompetent swiss mice tongue. Experiments were conduced in sixteen tumor induced mice that were divided in three control groups: (1) tumor without treatment; (2) tumor with 100 J/cm(2) laser (670 nm) irradiation; and (3) tumor with AlClPc peritumoral injection; and a PDT experimental group when tumors received AlClPc injection followed by tumor irradiation. Control groups present similar macroscopically and histological patterns after treatments, while PDT treatment induced 90% of Ehrlich tumor necrosis after 24 h of one single showing the efficacy of liposome-AlClPc (aluminum-chloro-phthalocyanine) mediated PDT application, on the treatment of oral cancer. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
An analysis of the relationships of the major arthropod groups Was undertaken using mitochondrial genome data to examine the hypotheses that Hexapoda is polyphyletic and that Collembola is more closely related to branchiopod crustaceans than insects. We sought to examine the sensitivity of this relationship to outgroup choice, data treatment. gene choice and optimality criteria used in the phylogenetic analysis of mitochondrial genome data. Additionally we sequenced the mitochondrial genome of ail archaeognathan, Nesomachilis australica. to improve taxon selection in the apterygote insects, a group poorly represented in previous mitochondrial phylogenies. The sister group of the Collembola was rarely resolved in our analyses with a significant level of support. The use of different outgroups (myriapods, nematodes, or annelids + mollusks) resulted in many different placements of Collembola. The way in which the dataset was coded for analysis (DNA, DNA with the exclusion of third codon position and as amino acids) also had marked affects on tree topology. We found that nodal Support was spread evenly throughout the 13 mitochondrial genes and the exclusion of genes resulted in significantly less resolution in the inferred trees. Optimality criteria had a much lesser effect on topology than the preceding factors; parsimony and Bayesian trees for a given data set and treatment were quite similar. We therefore conclude that the relationships of the extant arthropod groups as inferred by mitochondrial genomes are highly vulnerable to outgroup choice, data treatment and gene choice, and no consistent alternative hypothesis of Collembola's relationships is supported. Pending the resolution of these identified problems with the application of mitogenomic data to basal arthropod relationships, it is difficult to justify the rejection of hexapod monophyly, which is well supported on morphological grounds. (c) The Willi Hennig Society 2004.
Resumo:
To study the genetic structure of the Tikuna tribe, four major Native American mitochondrial DNA (mtDNA) founder haplogroups were analyzed in 187 Amerindians from eight Tikuna villages located in the Brazilian Amazon. The central position of these villages in the continent makes them relevant for attempts to reconstruct population movements in South America. In this geographic region, there is particular concern regarding the genetic structure of the Tikuna tribe, formerly designated ""enigmatic"" due to its remarkable degree of intratribal homogeneity and the scarcity of private protein variants. In spite of its large population size and geographic distribution, the Tikuna tribe presents marked genetic and linguistic isolation. All individuals presented indigenous mtDNA haplogroups. An intratribal genetic heterogeneity pattern characterized by two highly homogeneous Tikuna groups that differ considerably from each other was observed. Such a finding was unexpected, since the Tikuna tribe is characterized by a social system that favors intratribal exogamy and patrilocality that would lead to a higher female migration rate and homogenization of the mtDNA gene pool. Demographic explosions and religious events, which significantly changed the sizes and compositions of many Tikuna villages, may be reflected in the genetic results presented here. Am J Phys Anthropol 140:526-531,2009. (C) 2009 Wiley-Liss, Inc
Resumo:
The effects of prolonged recruitment manoeuvre (PRM) were compared with sustained inflation (SI) in paraquat-induced mild acute lung injury (ALI) in rats. Twenty-four hours after ALI induction, rats were anesthetized and mechanically ventilated with VT = 6 ml/kg and positive end-expiratory pressure (PEEP) = 5 cmH(2)O for 1 h. SI was performed with an instantaneous pressure increase of 40 cmH(2)O that was sustained for 40 s, while PRM was done by a step-wise increase in positive inspiratory pressure (PIP) of 15-20-25 cmH(2)O above a PEEP of 15 cm H(2)O (maximal PIP = 40 cmH(2)O), with interposed periods of PIP = 10 cmH(2)O above a PEEP = 15 cmH(2)O. Lung static elastance and the amount of alveolar collapse were more reduced with PRM than SI, yielding improved oxygenation. Additionally, tumour necrosis factor-alpha, interleukin-6, interferon-gamma, and type III procollagen mRNA expressions in lung tissue and lung epithelial cell apoptosis decreased more in PRM. In conclusion, PRM improved lung function, with less damage to alveolar epithelium, resulting in reduced pulmonary injury. (C) 2009 Elsevier BLV. All rights reserved.
Resumo:
Pathological inattention following parietal damage causes perceptual impairments for visual stimuli in the contralesional hemifield. Here we used functional magnetic resonance imaging (fMRI) to examine visual cortex activity in parietal patients as they performed a spatial attention task. Righthemisphere patients and healthy controls viewed counterphasing checkerboards in which coloured targets appeared briefly within the contralesional and ipsilesional hemifields. In separate fMRI runs participants focused their attention covertiy on the left or right hemifield, or on both hemifields concurrentiy. They were required to detect coloured targets that appeared briefly within the attended hemifield(s), and to withhold responses to distractor stimuli. Neural activit}' was significantly attenuated in early visual areas within the damaged hemisphere. Crucially, although attention significantiy modulated early visual activit}' within the intact (left) hemisphere, there was relatively littie modulation of activity within the affected hemisphere. Our findings suggest that parietal lesions alter early cortical responses to contralesional visual inputs.
Resumo:
Cryopreservation of parathyroid tissue is used in the surgical treatment of secondary hyperparathyroidism. After surgical resection, the tissue is temporarily maintained in a cell culture solution until it arrives at the specialized laboratory where the cryopreservation process will take place. The present study evaluates the time that the human hyperplastic parathyroid gland tissue can wait before cryopreservation, based on parathyroid cell ultrastructural integrity. This prospective study included 11 patients who underwent total parathyroidectomy with heterotopic autotransplantation and cryopreservation of parathyroid tissue fragments. Part of the tissue was kept in cell culture solution at 4A degrees C. Five time periods between 2 and 24 h were defined, and parathyroid fragments were kept in the solution for that length of time. At the end of each period, the fragments were removed from the transport solution, fixed, and prepared for ultrathin sections. Of the 11 cases studied, 10 showed ultrastructural findings consistent with cellular viability in tissue fragments that remained in the transport solution up to 12 h. Electron microscopy revealed that cell adhesion and the integrity of plasma membranes, nuclei, and mitochondria were preserved in one case for up to 24 h. Changes in mitochondrial structure represented the most constant ultrastructural damage seen in the cases studied, in addition to the presence of edema and cell vacuoles. Analysis of the ultrastructure of hyperplastic parathyroid gland tissue showed that ultrastructural integrity was in most cases properly maintained in fragments stored up to 12 h in a cell culture solution at 4A degrees C.
Resumo:
OBJECTIVES The glycosaminoglycan (GAG) layer is referred to as a bladder protective factor. We reproduced an experimental model of urothelial damage to assess GAG metabolism in the process of injury and recovery of the urothelium. METHODS Wistar female rats were bladder catheterized and instilled with either protamine sulfate (PS groups) or sterile saline (control groups). At different days after the procedure, 24-hour urine samples were obtained. The urinary levels of hyaluronic acid (HA) and sulfated glycosaminoglycan were determined in all groups and in nonmanipulated rats (day 0). Additionally, sulfated-GAG synthesis was assessed by the incorporation of [S-35]-inorganic sulfate. The bladders were analyzed by histochemical staining for HA and immunofluorescence for heparin sulfate and syndecan-4. RESULTS Urinary HA and sulfated-GAG were elevated after PS injection (P <0.05). A greater concentration of [S-35] -labeled GAG in the PS group animals on the fifth day and, especially, on the seventh day represented increased GAG synthesis at these periods (P <0.05). Bladder sections from the PS group animals on day 1 showed a greater amount of HA in the urothelium. PS instillation damaged the urothelium layer of heparin sulfate and syndecan-4 seen in the control animals. On day 5, patchy areas of a restored layer were seen, and, on day 7, this layer had completely regenerated. CONCLUSIONS Urinary GAG cannot differentiate urothelial damage from recovery. Elevated levels of urinary GAG can result from either desquamation of the surface cell GAG layer or increased GAG synthesis to regenerate the damaged urothelium.
Resumo:
Tissue damage in the kidney and brain after systemic infection with Candida albicans was examined in recombinant inbred strains (AKXL) derived from AKR and C57/L progenitors. Nine of the 15 strains showed mild (C57/L-like) tissue damage. Of the remainder, two strains developed lesions comparable to the AKR parental strain, whereas four exhibited a much move severe pattern of tissue damage. This was characterized by pronounced mycelial growth in the brain, and gross oedema of the kidney, with extensive fungal colonization and marked tissue destruction. The presence of the null allele of the haemolytic complement gene (Hc) may be necessary but not sufficient, for the expression of the very severe lesions. The results were interpreted as reflecting the actions of two independent genes, which have been designated Carg1 and Carg2 (Candida albicans resistance genes 1 and 2). (C) 1997 Academic Press Limited.
Resumo:
Objective: To evaluate the importance of receptor activator of nuclear factor kappa B (RANK)/receptor activator of nuclear factor kappa B ligand (RANKL)/osteoprotegerin (OPG) modulation in active polyarticular juvenile idiopathic arthritis (pJIA) patients with and without bone erosions. Methods: Thirty female patients (mean age 11.07 +/- 3.77 years, range 4-17 years) with active pJIA and 30 healthy gender-and age-matched controls were consecutively selected for this study. All involved articulations were assessed by X-ray and examined for the presence of bone erosions. The serum levels of RANKL and OPG were measured using an enzyme-linked immunosorbent assay (ELISA). Results: Patients with active pJIA had higher levels of serum RANKL than controls [2.90 (0.1-37.4) vs. 0.25 (0.1-5.7) pg/mL, p=0.007] and a lower OPG/RANKL ratio [21.25 (1.8-897.6) vs. 347.5 (9-947.8), p=0.005]. However, levels of OPG were comparable in both groups [55.24 (28.34-89.76) vs. 64.42 (30.68-111.28) pg/mL, p=0.255]. Higher levels of serum RANKL and a lower OPG/RANKL ratio were also observed in active pJIA patients with bone erosions compared to controls [3.49 (0.1-37.4) vs. 0.25 (0.1-5.7) pg/mL, p=0.0115 and 14.3 (1.8-897.6) vs. 347.5 (9-947.8), p=0.016]. However, RANKL levels and OPG/RANKL ratio were similar in pJIA patients without bone erosion and controls [1.75 (0.1-10.9) vs. 0.25 (0.1-5.7) pg/mL, p=0.055 and 29.2 (3.3-756.8) vs. 347.5 (9-947.8), p=0.281]. Conclusion: These data suggest that active pJIA with bone erosions is associated with high serum levels of RANKL and a low OPG/RANKL ratio, indicating that these alterations may reflect bone damage in this disease.
Resumo:
Brain injury is responsible for significant morbidity and mortality in trauma patients, but controversy still exists over therapeutic management for these patients. The objective of this study was to analyze the effect of phototherapy with low intensity lasers on local and systemic immunomodulation following cryogenic brain injury. Laser phototherapy was applied (or not-controls) immediately after cryogenic brain injury performed in 51 adult male Wistar rats. The animals were irradiated twice (3 h interval), with continuous diode laser (gallium-aluminum-arsenide (GaAlAs), 780 nm, or indium-gallium-aluminum-phosphide (InGaAlP), 660 nm) in two points and contact mode, 40 mW, spot size 0.042 cm(2), 3 J/cm(2) and 5 J/cm(2) (3 s and 5 s, respectively). The experimental groups were: Control (non-irradiated), RL3 (visible red laser/ 3 J/cm(2)), RL5 (visible red laser/5 J/cm(2)), IRL3 (infrared laser/ 3 J/cm(2)), IRL5 (infrared laser/5 J/cm(2)). The production of interleukin-1IL-1 beta (IL-1 beta), interleukin6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor-alpha (TNF-alpha) was analyzed by enzyme immunoassay technique (ELISA) test in brain and blood samples. The IL-1 beta concentration in brain of the control group ;was significantly reduced in 24 h (p < 0.01). This reduction was also observed in the RL5 and IRL3 groups. The TNF-alpha and IL-6 concentrations increased significantly (p < 0.01 and p < 0.05, respectively) in the blood of all groups, except by the IRL3 group. The IL-6 levels in RL3 group were significantly smaller than in control group in both experimental times. IL-10 concentration was maintained stable in all groups in brain and blood. Under the conditions of this study, it is possible to conclude that the laser phototherapy can affect TNF-alpha, IL-1 beta and IL-6 levels in the brain and in circulation in the first 24 h following cryogenic brain injury. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
BACKGROUND: Recently, studies have been conducted examining the efficacy of 3% hypertonic saline solution (HS) for the treatment of traumatic brain injury; however, few studies have analyzed the effects of 3% hemorrhagic shock during hemorrhagic shock. The aim of this study was to test the potential immunomodulatory benefits of 3% hemorrhagic shock resuscitation over standard fluid resuscitation. METHODS: Wistar rats were bled to a mean arterial pressure of 35 mm Hg and then randomized into 3 groups: those treated with lactated Ringer`s solution (LR; 33 mL/kg, n = 7), 3% HS (10 mL/kg, n = 7), and 7.5% HS (4 mL/kg, n = 7). Half of the extracted blood was reinfused after fluid resuscitation. Animals that did not undergo shock served as controls (n = 5). Four hours after hemorrhagic shock, blood was collected for the evaluation of tumor necrosis factor-a and interleukin-6 by enzyme immunoassay. Lung and intestinal samples were obtained for histopathologic analysis. RESULTS: Animals in the HS groups had significantly higher mean arterial pressure than those in the LR group 1 hour after treatment. Osmolarity and sodium levels were markedly elevated in the HS groups. Tumor necrosis factor-alpha and interleukin-6 levels were similar between the control and HS groups but significantly higher in the LR group (P < .05). The lung injury score was significantly higher in the LR group compared with the 7.5% HS and 3% HS groups (5.7 +/- 0.7, 2.1 +/- 0.4, and 2.7 +/- 0.5, respectively). Intestinal injury was attenuated in the 7.5% HS and 3% HS groups compared with the LR group (2.0 +/- 0.6, 2.3 +/- 0.4, and 5.9 +/- 0.6, respectively). CONCLUSIONS: A small-volume resuscitation strategy modulates the inflammatory response and decreases end-organ damage after HS. Three percent HS provides immunomodulatory and metabolic effects similar to those observed with conventional concentrations of HS. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The technique of polymerase chain reaction (PCR) differential display was used to detect alterations in gene expression after chronic alcohol administration. Male Wistar rats were treated with ethanol vapor for 14 days. The cDNA generated from mRNA isolated from the hippocampi of ethanol-treated and control animals was compared by PCR differential display. A differentially expressed cDNA fragment was used to screen mRNA samples by Northern analysis. The level of a mRNA was significantly elevated (x 2.5) in the hippocampus, but not the cortex of alcohol-treated rats up to 48 hr after withdrawal. Sequence analysis of the cDNA fragment revealed an almost perfect homology to rat mitochondrial NADH dehydrogenase subunit 4 mRNA. The selective induction of this mRNA in alcohol-treated rat brain areas suggests altered metabolic processes and possible dysfunction of the mitochondria. The technique of PCR differential display may prove useful in further analysis of gene expression during alcohol dependence and withdrawal.
Resumo:
Background. Diving liver ischemia, the decrease in mitochondrial energy causes cellular damage that is aggravated after reperfusion. This injury can trigger a systemic inflammatory syndrome, also producing remote organ damage. Several substances have been employed to decrease this inflammatory response during liver transplantation, liver resections, and hypovolemic shock. The aim of this study was to evaluate the effects of hypertonic saline solution and the best timing of administration to prevent organ injury during experimental liver ischemia/reperfusion. Methods. Rats underwent 1 hr of warm liver ischemia followed by reperfusion. Eighty-four rats Were allocated into 6 groups: sham group, control of ischemia group) (C), pre-ischemia treated NaCl 0.9% (ISS) and NaCl 7.5% (HTS) groups, pre-repefusion ISS, and HTS groups. Blood and tissue samples were collected 4 hr after reperfusion. Results. HTS showed beneficial effects in prevention of live ischemia/reperfusion injury. HTS groups developed increases in AST and ALT levels that were significantly less than ISS groups; however, the HTS pre-reperfusion group showed levels significantly less than the HTS pre-ischemia group. No differences in IL-6 and IL-10 levels, were observed. A significant decrease in mitochondrial dysfunction as well as hepatic edema was observed in the HTS pre-reperfusion group. Pulmonary vascular permeability Was significantly less in the pre-reperfusion HTS group compared to the ISS group. No differences in myeloperoxidase activity were observed. The liver histologic score was significantly less in the pre-reperfusion HTS group compared to the pre-ischemia I-ITS group. Conclusion. HTS ameliorated local and systemic injuries in experimental liver ischemia/reperfusion. Infusion of HTS in the pre-reperfusion period may be an important adjunct to accomplish the best results. (Surgery 2010;147:415-23.)