986 resultados para MEAN-FIELD THEORY
Resumo:
We discuss the Application of TAP mean field methods known from Statistical Mechanics of disordered systems to Bayesian classification with Gaussian processes. In contrast to previous applications, no knowledge about the distribution of inputs is needed. Simulation results for the Sonar data set are given.
Resumo:
In this chapter, we elaborate on the well-known relationship between Gaussian processes (GP) and Support Vector Machines (SVM). Secondly, we present approximate solutions for two computational problems arising in GP and SVM. The first one is the calculation of the posterior mean for GP classifiers using a `naive' mean field approach. The second one is a leave-one-out estimator for the generalization error of SVM based on a linear response method. Simulation results on a benchmark dataset show similar performances for the GP mean field algorithm and the SVM algorithm. The approximate leave-one-out estimator is found to be in very good agreement with the exact leave-one-out error.
Resumo:
The dynamics of the non-equilibrium Ising model with parallel updates is investigated using a generalized mean field approximation that incorporates multiple two-site correlations at any two time steps, which can be obtained recursively. The proposed method shows significant improvement in predicting local system properties compared to other mean field approximation techniques, particularly in systems with symmetric interactions. Results are also evaluated against those obtained from Monte Carlo simulations. The method is also employed to obtain parameter values for the kinetic inverse Ising modeling problem, where couplings and local field values of a fully connected spin system are inferred from data. © 2014 IOP Publishing Ltd and SISSA Medialab srl.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
This work introduces a Gaussian variational mean-field approximation for inference in dynamical systems which can be modeled by ordinary stochastic differential equations. This new approach allows one to express the variational free energy as a functional of the marginal moments of the approximating Gaussian process. A restriction of the moment equations to piecewise polynomial functions, over time, dramatically reduces the complexity of approximate inference for stochastic differential equation models and makes it comparable to that of discrete time hidden Markov models. The algorithm is demonstrated on state and parameter estimation for nonlinear problems with up to 1000 dimensional state vectors and compares the results empirically with various well-known inference methodologies.
Resumo:
2000 Mathematics Subject Classification: 11S31 12E15 12F10 12J20.
Resumo:
In this thesis, we consider N quantum particles coupled to collective thermal quantum environments. The coupling is energy conserving and scaled in the mean field way. There is no direct interaction between the particles, they only interact via the common reservoir. It is well known that an initially disentangled state of the N particles will remain disentangled at times in the limit N -> [infinity]. In this thesis, we evaluate the η-body reduced density matrix (tracing over the reservoirs and the N - η remaining particles). We identify the main disentangled part of the reduced density matrix and obtain the first order correction term in 1/N. We show that this correction term is entangled. We also estimate the speed of convergence of the reduced density matrix as N -> [infinity]. Our model is exactly solvable and it is not based on numerical approximation.
Resumo:
Recent theoretical advances predict the existence, deep into the glass phase, of a novel phase transition, the so-called Gardner transition. This transition is associated with the emergence of a complex free energy landscape composed of many marginally stable sub-basins within a glass metabasin. In this study, we explore several methods to detect numerically the Gardner transition in a simple structural glass former, the infinite-range Mari-Kurchan model. The transition point is robustly located from three independent approaches: (i) the divergence of the characteristic relaxation time, (ii) the divergence of the caging susceptibility, and (iii) the abnormal tail in the probability distribution function of cage order parameters. We show that the numerical results are fully consistent with the theoretical expectation. The methods we propose may also be generalized to more realistic numerical models as well as to experimental systems.
Resumo:
We summarise the properties and the fundamental mathematical results associated with basic models which describe coagulation and fragmentation processes in a deterministic manner and in which cluster size is a discrete quantity (an integer multiple of some basic unit size). In particular, we discuss Smoluchowski's equation for aggregation, the Becker-Döring model of simultaneous aggregation and fragmentation, and more general models involving coagulation and fragmentation.
Resumo:
This thesis considers non-perturbative methods in quantum field theory with applications to gravity and cosmology. In particular, there are chapters on black hole holography, inflationary model building, and the conformal bootstrap.
Resumo:
%'e compute the divergent part of the three-point vertex function of the non-Abelian Yang-Mills gauge field theory within the stochastic quantization approach to the one-loop order. This calculation allows us to find four renormalization constants which, together with the four previously obtained, verify, to the calculated order, some Ward identities.
Resumo:
It has been recently shown that the double exchange Hamiltonian, with weak antiferromagnetic interactions, has a richer variety of first- and second-order transitions than previously anticipated, and that such transitions are consistent with the magnetic properties of manganites. Here we present a thorough discussion of the variational mean-field approach that leads to these results. We also show that the effect of the Berry phase turns out to be crucial to produce first-order paramagnetic-ferromagnetic transitions near half filling with transition temperatures compatible with the experimental situation. The computation relies on two crucial facts: the use of a mean-field ansatz that retains the complexity of a system of electrons with off-diagonal disorder, not fully taken into account by the mean-field techniques, and the small but significant antiferromagnetic superexchange interaction between the localized spins.
Resumo:
This PhD thesis focuses on studying the classical scattering of massive/massless particles toward black holes, and investigating double copy relations between classical observables in gauge theories and gravity. This is done in the Post-Minkowskian approximation i.e. a perturbative expansion of observables controlled by the gravitational coupling constant κ = 32πGN, with GN being the Newtonian coupling constant. The investigation is performed by using the Worldline Quantum Field Theory (WQFT), displaying a worldline path integral describing the scattering objects and a QFT path integral in the Born approximation, describing the intermediate bosons exchanged in the scattering event by the massive/massless particles. We introduce the WQFT, by deriving a relation between the Kosower- Maybee-O’Connell (KMOC) limit of amplitudes and worldline path integrals, then, we use that to study the classical Compton amplitude and higher point amplitudes. We also present a nice application of our formulation to the case of Hard Thermal Loops (HTL), by explicitly evaluating hard thermal currents in gauge theory and gravity. Next we move to the investigation of the classical double copy (CDC), which is a powerful tool to generate integrands for classical observables related to the binary inspiralling problem in General Relativity. In order to use a Bern-Carrasco-Johansson (BCJ) like prescription, straight at the classical level, one has to identify a double copy (DC) kernel, encoding the locality structure of the classical amplitude. Such kernel is evaluated by using a theory where scalar particles interacts through bi-adjoint scalars. We show here how to push forward the classical double copy so to account for spinning particles, in the framework of the WQFT. Here the quantization procedure on the worldline allows us to fully reconstruct the quantum theory on the gravitational side. Next we investigate how to describe the scattering of massless particles off black holes in the WQFT.
Resumo:
In questo lavoro estendiamo concetti classici della geometria Riemanniana al fine di risolvere le equazioni di Maxwell sul gruppo delle permutazioni $S_3$. Cominciamo dando la strutture algebriche di base e la definizione di calcolo differenziale quantico con le principali proprietà. Generalizziamo poi concetti della geometria Riemanniana, quali la metrica e l'algebra esterna, al caso quantico. Tutto ciò viene poi applicato ai grafi dando la forma esplicita del calcolo differenziale quantico su $\mathbb{K}(V)$, della metrica e Laplaciano del secondo ordine e infine dell'algebra esterna. A questo punto, riscriviamo le equazioni di Maxwell in forma geometrica compatta usando gli operatori e concetti della geometria differenziale su varietà che abbiamo generalizzato in precedenza. In questo modo, considerando l'elettromagnetismo come teoria di gauge, possiamo risolvere le equazioni di Maxwell su gruppi finiti oltre che su varietà differenziabili. In particolare, noi le risolviamo su $S_3$.
Resumo:
In this thesis, I address quantum theories and specifically quantum field theories in their interpretive aspects, with the aim of capturing some of the most controversial and challenging issues, also in relation to possible future developments of physics. To do so, I rely on and review some of the discussions carried on in philosophy of physics, highlighting methodologies and goals. This makes the thesis an introduction to these discussions. Based on these arguments, I built and conducted 7 face-to-face interviews with physics professors and an online survey (which received 88 responses from master's and PhD students and postdoctoral researchers in physics), with the aim of understanding how physicists make sense of concepts related to quantum theories and to find out what they can add to the discussion. Of the data collected, I report a qualitative analysis through three constructed themes.