719 resultados para Logic fuzzy
Resumo:
The main objective of the presented study is the design of a analog multiplier-divider as integrant part of the type-reducer circuit of type-2 fuzzy controller chip. The proposed circuit is a multiplier/divider which operates in current mode, in the CMOS technology with a supply voltage of 1.8 V.The circuit simulation was performed in PSPICE software with simulation model provided by AMS (Austria Mikro Systems International) in CMOS technology 0.35μm
Resumo:
The present work develops a fuzzy inference system to control the rotation speed of a DC motor available in Degem Kit. Therefore, it should use the fuzzy toolbox of Matlab in conjunction with the data acquisition board NI - USB - 6009, a National Instrument’s board. An introduction to fuzzy logic, the mathematical model of a DC motor and the operation of data acquisition board is presented first. Followed by the controller fuzzy model implemented using Simulink which is described in detail. Finally, the prototype is shown and the simulator results are presented
Resumo:
Abstract A fuzzy linguistic model based on the Mamdani method with input variables, particulate matter, sulfur dioxide, temperature and wind obtained from CETESB with two membership functions each was built to predict the average hospitalization time due to cardiovascular diseases related to exposure to air pollutants in São José dos Campos in the State of São Paulo in 2009. The output variable is the average length of hospitalization obtained from DATASUS with six membership functions. The average time given by the model was compared to actual data using lags of 0 to 4 days. This model was built using the Matlab v. 7.5 fuzzy toolbox. Its accuracy was assessed with the ROC curve. Hospitalizations with a mean time of 7.9 days (SD = 4.9) were recorded in 1119 cases. The data provided revealed a significant correlation with the actual data according to the lags of 0 to 4 days. The pollutant that showed the greatest accuracy was sulfur dioxide. This model can be used as the basis of a specialized system to assist the city health authority in assessing the risk of hospitalizations due to air pollutants.
Resumo:
The objective of this work is to determine the membership functions for the construction of a fuzzy controller to evaluate the energy situation of the company with respect to load and power factors. The energy assessment of a company is performed by technicians and experts based on the indices of load and power factors, and analysis of the machines used in production processes. This assessment is conducted periodically to detect whether the procedures performed by employees in relation to how of use electricity energy are correct. With a fuzzy controller, this performed can be done by machines. The construction of a fuzzy controller is initially characterized by the definition of input and output variables, and their associated membership functions. We also need to define a method of inference and a processor output. Finally, you need the help of technicians and experts to build a rule base, consisting of answers that provide these professionals in function of characteristics of the input variables. The controller proposed in this paper has as input variables load and power factors, and output the company situation. Their membership functions representing fuzzy sets called by linguistic qualities, as “VERY BAD” and “GOOD”. With the method of inference Mandani and the processor to exit from the Center of Area chosen, the structure of a fuzzy controller is established, simply by the choice by technicians and experts of the field energy to determine a set of rules appropriate for the chosen company. Thus, the interpretation of load and power factors by software comes to meeting the need of creating a single index that indicates an overall basis (rational and efficient) as the energy is being used.
Resumo:
This paper presents the application of fuzzy theory to support the decision of implementing energy efficiency program in sawmills operating in the processing of Pinustaeda and Pinuselliotii. The justification of using a system based on fuzzy theory for analysis of consumption and the specific factors involved, such is the diversity of rates / factors. With the fuzzy theory, we can build a reliable system for verifying actual energy efficiency. The indices and factors characteristic of industrial activity were measured and used as the basis for the fuzzy system. We developed a management system and technology. The system involves the management practices in energy efficiency, maintenance of plant and equipment and the presence of qualified staff. The technological system involves the power factor, load factor, the factor of demand and the specific consumption. The first response provides the possibility of increased energy efficiency and the second level of energy efficiency in the industry studied. With this tool, programs can be developed for energy conservation and energy efficiency in the industrial timber with wide application in this area that is as diverse as production processes. The same systems developed can be used in other industrial activities, provided they are used indices and characteristic features of the sectors involved.
Resumo:
Pós-graduação em Agronegócio e Desenvolvimento - Tupã
Resumo:
The pharmaceutical industry was consolidated in Brazil in the 1930s, and since then has become increasingly competitive. Therefore the implementation of the Toyota Production System, which aims to lean production, has become common among companies in the segment. The main efficiency indicator currently used is the Overall Equipment Effectiveness (OEE). This paper intends to, using the fuzzy model DEA-BCC, analyze the efficiency of the production lines of a pharmaceutical company in the Paraíba Valley, compare the values obtained by the model with those calculated by the OEE, identify the most sensitive machines to variation in the data input and develop a ranking of effectiveness between the consumer machinery. After the development, it is shown that the accuracy of the relationship between the two methods is approximately 57% and the line considered the most effective by the Toyota Production System is not the same as the one found by this paper
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
The pharmaceutical industry was consolidated in Brazil in the 1930s, and since then has become increasingly competitive. Therefore the implementation of the Toyota Production System, which aims to lean production, has become common among companies in the segment. The main efficiency indicator currently used is the Overall Equipment Effectiveness (OEE). This paper intends to, using the fuzzy model DEA-BCC, analyze the efficiency of the production lines of a pharmaceutical company in the Paraíba Valley, compare the values obtained by the model with those calculated by the OEE, identify the most sensitive machines to variation in the data input and develop a ranking of effectiveness between the consumer machinery. After the development, it is shown that the accuracy of the relationship between the two methods is approximately 57% and the line considered the most effective by the Toyota Production System is not the same as the one found by this paper
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Backgrounds Ea aims: The boundaries between the categories of body composition provided by vectorial analysis of bioimpedance are not well defined. In this paper, fuzzy sets theory was used for modeling such uncertainty. Methods: An Italian database with 179 cases 18-70 years was divided randomly into developing (n = 20) and testing samples (n = 159). From the 159 registries of the testing sample, 99 contributed with unequivocal diagnosis. Resistance/height and reactance/height were the input variables in the model. Output variables were the seven categories of body composition of vectorial analysis. For each case the linguistic model estimated the membership degree of each impedance category. To compare such results to the previously established diagnoses Kappa statistics was used. This demanded singling out one among the output set of seven categories of membership degrees. This procedure (defuzzification rule) established that the category with the highest membership degree should be the most likely category for the case. Results: The fuzzy model showed a good fit to the development sample. Excellent agreement was achieved between the defuzzified impedance diagnoses and the clinical diagnoses in the testing sample (Kappa = 0.85, p < 0.001). Conclusions: fuzzy linguistic model was found in good agreement with clinical diagnoses. If the whole model output is considered, information on to which extent each BIVA category is present does better advise clinical practice with an enlarged nosological framework and diverse therapeutic strategies. (C) 2012 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Resumo:
This work proposes the development of an Adaptive Neuro-fuzzy Inference System (ANFIS) estimator applied to speed control in a three-phase induction motor sensorless drive. Usually, ANFIS is used to replace the traditional PI controller in induction motor drives. The evaluation of the estimation capability of the ANFIS in a sensorless drive is one of the contributions of this work. The ANFIS speed estimator is validated in a magnetizing flux oriented control scheme, consisting in one more contribution. As an open-loop estimator, it is applied to moderate performance drives and it is not the proposal of this work to solve the low and zero speed estimation problems. Simulations to evaluate the performance of the estimator considering the vector drive system were done from the Matlab/Simulink(R) software. To determine the benefits of the proposed model, a practical system was implemented using a voltage source inverter (VSI) to drive the motor and the vector control including the ANFIS estimator, which is carried out by the Real Time Toolbox from Matlab/Simulink(R) software and a data acquisition card from National Instruments.
Resumo:
La ricerca presentata è un’ampia esplorazione delle possibili applicazioni di concetti, metodi e procedure della Fuzzy Logic all’Ingegneria dei Materiali. Tale nuovo approccio è giustificato dalla inadeguatezza dei risultati conseguiti con i soli metodi tradizionali riguardo alla reologia ed alla durabilità, all’utilizzo di dati di laboratorio nella progettazione e alla necessità di usare un linguaggio (informatizzabile) che consenta una valutazione congiunta degli aspetti tecnici, culturali, economici, paesaggistici della progettazione. – In particolare, la Fuzzy Logic permette di affrontare in modo razionale l’aleatorietà delle variabili e dei dati che, nel settore specifico dei materiali in opera nel costruito dei Beni Culturali, non possono essere trattati con i metodi statistici ordinari. – La scelta di concentrare l’attenzione su materiali e strutture in opera in siti archeologici discende non solo dall’interesse culturale ed economico connesso ai sempre più numerosi interventi in questo nuovo settore di pertinenza dell’Ingegneria dei Materiali, ma anche dal fatto che, in tali contesti, i termini della rappresentatività dei campionamenti, della complessità delle interazioni tra le variabili (fisiche e non), del tempo e quindi della durabilità sono evidenti ed esasperati. – Nell’ambito di questa ricerca si è anche condotto un ampio lavoro sperimentale di laboratorio per l’acquisizione dei dati utilizzati nelle procedure di modellazione fuzzy (fuzzy modeling). In tali situazioni si è operato secondo protocolli sperimentali standard: acquisizione della composizione mineralogica tramite diffrazione di raggi X (XRD), definizione della tessitura microstrutturale con osservazioni microscopiche (OM, SEM) e porosimetria tramite intrusione forzata di mercurio (MIP), determinazioni fisiche quali la velocità di propagazione degli ultrasuoni e rotoviscosimetria, misure tecnologiche di resistenza meccanica a compressione uniassiale, lavorabilità, ecc. – Nell’elaborazione dei dati e nella modellazione in termini fuzzy, la ricerca è articolata su tre livelli: a. quello dei singoli fenomeni chimico-fisici, di natura complessa, che non hanno trovato, a tutt’oggi, una trattazione soddisfacente e di generale consenso; le applicazioni riguardano la reologia delle dispersioni ad alto tenore di solido in acqua (calci, cementi, malte, calcestruzzi SCC), la correlazione della resistenza a compressione, la gelività dei materiali porosi ed alcuni aspetti della durabilità del calcestruzzo armato; b. quello della modellazione della durabilità dei materiali alla scala del sito archeologico; le applicazioni presentate riguardano i centri di cultura nuragica di Su Monte-Sorradile, GennaMaria-Villanovaforru e Is Paras-Isili; c. quello della scelta strategica costituita dalla selezione del miglior progetto di conservazione considerando gli aspetti connessi all’Ingegneria dei Materiali congiuntamente a quelli culturali, paesaggistici ed economici; le applicazioni hanno riguardato due importanti monumenti (Anfiteatro e Terme a Mare) del sito Romano di Nora-Pula.
Resumo:
Nell’attuale contesto di aumento degli impatti antropici e di “Global Climate Change” emerge la necessità di comprenderne i possibili effetti di questi sugli ecosistemi inquadrati come fruitori di servizi e funzioni imprescindibili sui quali si basano intere tessiture economiche e sociali. Lo studio previsionale degli ecosistemi si scontra con l’elevata complessità di questi ultimi in luogo di una altrettanto elevata scarsità di osservazioni integrate. L’approccio modellistico appare il più adatto all’analisi delle dinamiche complesse degli ecosistemi ed alla contestualizzazione complessa di risultati sperimentali ed osservazioni empiriche. L’approccio riduzionista-deterministico solitamente utilizzato nell’implementazione di modelli non si è però sin qui dimostrato in grado di raggiungere i livelli di complessità più elevati all’interno della struttura eco sistemica. La componente che meglio descrive la complessità ecosistemica è quella biotica in virtù dell’elevata dipendenza dalle altre componenti e dalle loro interazioni. In questo lavoro di tesi viene proposto un approccio modellistico stocastico basato sull’utilizzo di un compilatore naive Bayes operante in ambiente fuzzy. L’utilizzo congiunto di logica fuzzy e approccio naive Bayes è utile al processa mento del livello di complessità e conseguentemente incertezza insito negli ecosistemi. I modelli generativi ottenuti, chiamati Fuzzy Bayesian Ecological Model(FBEM) appaiono in grado di modellizare gli stati eco sistemici in funzione dell’ elevato numero di interazioni che entrano in gioco nella determinazione degli stati degli ecosistemi. Modelli FBEM sono stati utilizzati per comprendere il rischio ambientale per habitat intertidale di spiagge sabbiose in caso di eventi di flooding costiero previsti nell’arco di tempo 2010-2100. L’applicazione è stata effettuata all’interno del progetto EU “Theseus” per il quale i modelli FBEM sono stati utilizzati anche per una simulazione a lungo termine e per il calcolo dei tipping point specifici dell’habitat secondo eventi di flooding di diversa intensità.
Resumo:
La tesi affronta il concetto di esposizione al rischio occupazionale e il suo scopo è quello di indagare l’ambiente di lavoro e il comportamento dei lavoratori, con l'obiettivo di ridurre il tasso di incidenza degli infortuni sul lavoro ed eseguire la riduzione dei rischi. In primo luogo, è proposta una nuova metodologia denominata MIMOSA (Methodology for the Implementation and Monitoring of Occupational SAfety), che quantifica il livello di "salute e sicurezza" di una qualsiasi impresa. Al fine di raggiungere l’obiettivo si è reso necessario un approccio multidisciplinare in cui concetti d’ingegneria e di psicologia sono stati combinati per sviluppare una metodologia di previsione degli incidenti e di miglioramento della sicurezza sul lavoro. I risultati della sperimentazione di MIMOSA hanno spinto all'uso della Logica Fuzzy nel settore della sicurezza occupazionale per migliorare la metodologia stessa e per superare i problemi riscontrati nell’incertezza della raccolta dei dati. La letteratura mostra che i fattori umani, la percezione del rischio e il comportamento dei lavoratori in relazione al rischio percepito, hanno un ruolo molto importante nella comparsa degli incidenti. Questa considerazione ha portato ad un nuovo approccio e ad una seconda metodologia che consiste nella prevenzione di incidenti, non solo sulla base dell'analisi delle loro dinamiche passate. Infatti la metodologia considera la valutazione di un indice basato sui comportamenti proattivi dei lavoratori e sui danni potenziali degli eventi incidentali evitati. L'innovazione consiste nell'applicazione della Logica Fuzzy per tener conto dell’"indeterminatezza" del comportamento umano e del suo linguaggio naturale. In particolare l’applicazione è incentrata sulla proattività dei lavoratori e si prefigge di impedire l'evento "infortunio", grazie alla generazione di una sorta d’indicatore di anticipo. Questa procedura è stata testata su un’azienda petrolchimica italiana.